湖南锡田钨锡多金属矿床流体包裹体研究 |
Received:November 18, 2014 Revised:April 24, 2015 点此下载全文 |
引用本文:LIU Man,QIU HuaNing,BAI XiuJuan,XIAO Ming,HE LiYan.2015.Fluid inclusion studies of Xintian tin-tungsten polymetallic deposit in Hunan Province[J].Mineral Deposits,34(5):981~998 |
Hits: 2093 |
Download times: 2039 |
Author Name | Affiliation | E-mail | LIU Man | Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China University of Chinese Academy of Sciences, Beijing 100049, China | | QIU HuaNing | Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China | qiuhn@gig.ac.cn | BAI XiuJuan | China University of Geosciences, Wuhan 430074, Hubei, China | | XIAO Ming | Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China University of Chinese Academy of Sciences, Beijing 100049, China | | HE LiYan | Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China University of Chinese Academy of Sciences, Beijing 100049, China | |
|
基金项目:本文得到“973”项目“华夏地块中生代陆壳再造与巨量金属成矿(编号:2012CB416706)”和国家自然科学基金创新群体项目"岩浆过程中元素的地球化学性质与成矿(编号:41421062)"的联合资助 |
|
中文摘要:锡田钨锡多金属矿床是南岭钨锡成矿带的重要组成部分。文章主要针对石英脉型钨锡矿和云英岩型钨矿中的石英流体包裹体进行了显微测温和激光拉曼光谱分析,流体包裹体分为4类:富液相两相水溶液包裹体(L型)、富气相两相水溶液包裹体(V型)、VCO2-LCO2-LH2O三相包裹体(C型)和含子晶三相包裹体(S型)。石英脉型钨锡矿均一温度为240~440℃,w(NaCleq)为1.4%~9.5%,云英岩型钨矿均一温度为370~470℃,且富锡石样品均一温度(th: 310~420℃,w(NaCleq)为4.3%~9.5%)略高于富黑钨矿样品(th: 240~340℃,w(NaCleq)为1.4% ~ 7.7%)。流体包裹体气相成分主要为CO2、CH4、N2。结合流体包裹体显微测温、激光拉曼光谱分析结果和野外矿床地质特征,探讨了成矿流体中N2、CH4的源区、W和Sn的赋存状态以及其成矿机制。W以一系列钨酸、钨酸根离子、碱金属钨酸盐赋存于流体中,Sn主要赋存状态为Sn(+2价)-Cl络合物。石英脉型钨锡矿因流体上升至花岗岩体或围岩的构造裂隙中,成矿流体与围岩相互反应以及与地壳流体与大气水混合,其p、t急剧下降以及流体pH值变化,导致黑钨矿沉淀,成矿流体从还原环境转为氧化环境致使锡石沉淀成矿。云英岩型钨矿有效成矿机制是流体沸腾或不混溶。 |
中文关键词:地球化学 流体包裹体 显微测温 激光拉曼光谱分析 石英脉型钨锡矿 云英岩型钨矿 锡田钨锡多金属矿床 |
|
Fluid inclusion studies of Xintian tin-tungsten polymetallic deposit in Hunan Province |
|
|
Abstract:The Xitian tin-tungsten polymetallic deposit is an important deposit in the Naling metallogenic belt. In this study, the authors analyzed the fluid inclusions in quartz and fluorites from the tin-tungsten quartz veins and wolframite-bearing greisen orebodies by using such techniques as microthermometry and laser Raman spectroscopy. Fluid inclusions can be mainly divided into four types: ① liquid-rich two-phase aqueous inclusions (Type L); ② gas-rich two-phase aqueous inclusions (Type V); ③ CO2-bearing three-phase inclusions (Type C) and ④ daughter-mineral-bearing three-phase inclusions (Type S). Microthermometric analyses indicate that the homogenization temperatures of quartz-vein type tungsten-tin ore vary from 240 to 440℃, and those of the greisen type wolframite ore from 370 to 470℃. The laser Raman analyses show that the main gas components of the ore-forming fluids consist of CO2, CH4, N2. Based on these data, the authors probed into the source region of N2, CH4 and the modes of occurrence of W and Sn in the ore-forming fluids, and discussed the metallogenic mechanism. Tungsten transport in ore-forming solutions occurred in the forms of tungstate ions, sodium tungstate, tungstic acid, or heteronuclear acid. However, tin transport was affected by a complex series of stannous chloride-bearing species (Sn(+2)-Cl). Ore-forming fluid moved upward into structural fractures in granitic masses or wall rocks due to the interaction of the ore-forming fluid with wall rocks and the mixture of crust-derived fluids or meteoric water, and then the pressure and temperature of ore-forming fluid sharply decreased, accompanied by the change of pH values, which led to the formation of quartz-vein type tungsten-tin deposits. Effective metallogenic mechanism of greisen-type tungsten deposits might be fluid boiling or fluid immiscibility. |
keywords:geochemistry fluid inclusion microthermometry laser Raman spectroscopic analysis tin-tungsten quartz vein deposit wolframite-bearing greisen deposit Xitian tin-tungsten polymetallic deposit |
View Full Text View/Add Comment Download reader |
|
|
|