(1 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点实验室, 北京1 00037; 2 北京大学地球与空间科学学院, 北京100871; 3 云南黄金矿业集团股份有限公 司, 云南 昆明650224; 4 阿尔伯塔大学地球与大气科学系, 加拿 大 埃德蒙顿T6 G 2E3)
第一作者简介贾福东, 男, 1990年生, 博士研究生, 矿物学、岩石学、矿床学专业。 Email: jiafudong009@163.com
**通讯作者刘欢, 女, 1986年生, 博士, 助理研究员, 主要从事矿物、岩石 、矿床学研究。 Email: xhhyliuhuan@163.com
收稿日期2017_01_20
本文得到云南黄金集团股份有限公司项目“滇西地区金多金属矿成矿规律及成矿系列
Yun nan: Evidence from zircon U_Pb dating, mineralogy
and geochemistry
(1 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Minera l Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2 Sc hool of Earth and Space Sciences, Peking University, Beijing 100871, China; 3 Y unnan Gold & Mineral Group Co., Ltd., Kunming 650224, Yunnan, China; 4 Departmen t of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Al berta T6G 2E3, Canada)
2017_01_20
区内主要发育NW向断裂构造,矿体多产于断裂的夹持部位,具明显的断裂控矿特点,勐满 矿区以F5断裂为界,分为东北部的光贺与西南部的热水塘2个矿段。F1和F2为本区两条最重 要NW向压性逆冲断层,夹持控制着矿床北部的光贺矿段矿体。F3和F4是两条次级断裂,其中 F4为F2断裂南侧的一条次级断裂,控制表生期红土型矿床,F2与F4夹持控制着勐满金矿床南 部的热水塘矿段矿体。主矿体纵跨光贺和热水塘2个矿段,分布于2~34勘探线间。矿体赋 存标高1183~920 m,长1580~1140 m,宽1380~820 m,一般宽约1000 m左右,平面分布面 积约1.10 km2,形态酷似一中间宽两端微窄的巨蝎之钳夹。矿体的产出形态受地层产状 与地 形控制,产于曼来组浅变质岩系、花开左组细碎屑岩和第四系残坡积层亦即红色黏土层内, 与围岩界线不明显,依据金的最低工业品位圈定的矿体整个连为一体,呈连续的不规则面状 (图2)。
矿区未见岩浆岩,但区内沿断裂分布的古热泉广泛发育。分布于大断裂附近的众多热泉,不 仅为流体的形成和运移提供了热动力,同时也带来了可能的成矿物质。在矿体内部有5个比 较大的古热泉中心(图2),这些热泉多分布在断裂附近,热泉中心硅化现象明显,发生强 烈的退色作用,整体呈蘑菇状,中心处发育大量团块状集合体,岩石具条纹 状、皮壳状和角 砾状构造,沿破碎带向外发育大量硅质脉体(图3、4)。此外,在矿区的周围仍可见有现代 热泉活动,尤其是矿区东侧沿勐满河和F1、F4构造带处十分密集,热泉沉积物中的w( Au)达20×10-9以上(冯钞熔等, 2008),表明该区热泉活动有明显金的富集作用 。
![]() |
图 1东南亚主要地块的分布(a),滇西地区构造框架及勐满金矿床大地构造位置(b)和 勐满金矿床区域地质图(c) (据Deng et al., 2014;云南黄金矿业集团, 2011改编) 1—第四系; 2—白垩系; 3—侏罗系; 4—石炭系; 5—新元古界; 6—印支期花岗岩; 7—燕山期花岗岩; 8—基性岩脉; 9—金矿床;10—铅锌银矿床; 11—铅锌矿床; 12—铅矿床; 13—铁矿床; 14—铜矿床; 15—背斜 轴; 16—向斜轴; 17—断层; 18—河流; 19—花岗岩采样地点; 20—国界 Fig. 1Distribution of principal continental blocks and sutures in Southeast As ia(a),geological map showing tectonic framework and location of the Mengman gold deposit(b) and regional geological map of the Mengman gold deposit (c )(modified after Deng et al., 2014; Yunnan Gold & Mineral Group Co., Ltd., 2 011) 1—Quaternary; 2—Cretaceous; 3—Jurassic; 4—Carboniferous; 5—Neoproterozoic; 6—Indosinian granite; 7—Yanshanian granite; 8—Mafic dike; 9—Gold deposit; 10—Lead_zinc_silver deposit; 11—Lead_zinc deposit; 12—Lead deposit; 13—Iron depos it; 14—Copper deposit; 15—Anticlinal axis; 16—Synclinal axis; 17—Fau lt; 18—River; 19—Granite sampling point; 20—Border |
![]() |
图 2勐满金矿床矿区地质图(a)及22号勘探线剖面图(b)(据云南黄金矿业集团, 2011 ) 1—第四系沉积物; 2—花开左组下段上亚段; 3—花开左组下段下亚段; 4—曼来组上段 ; 5—曼来组下段; 6—贫金矿体(Au 0.3~1 g/t); 7—富金矿体(Au>1 g/t); 8—热 泉中心; 9—原生硫化物矿化体; 10—断层; 11—推测断层; 12—断层破碎带; 13—钻 孔及编号; 14—钻孔内金 品位变化; 15—整合界线; 16—不整合界线; 17— 勘探线; 18—河流; 19—花岗岩采样地点; 20—国界 Fig. 2Geological map and vertical cross section along No. 22exploration line o f the Mengman gold deposit (modified after Yunnan Gold & Mineral Group Co., Lt d., 2011) 1—Quaternary sediments; 2—Upper submember of Huakaizuo Formation; 3—Lower sub member of Huakaizuo Formation; 4—Upper member of Manlai Formation; 5—Lower mem ber of Manlai Formation; 6—Barren orebodies; 7—Fertile orebodies; 8—Hot sprin g activity center; 9—Primary sulfide mineralized bodies; 10—Fault; 11—Inferre d faults; 12—Fault fracture zone; 13—Drill hole and its serial number; 14—Gol d grade variation in drill hole; 15—Conformity geological boundary; 16 —Unconformity geological boundary; 17—Exploration line; 18—River; 19 —Granite sampling point; 20—Border |
矿化类型主要分红土型氧化矿与原生硫化矿,以氧化矿为主,原生矿分布极为有限,总量不 超过5%。红土型氧化矿分布于地表至以下100 m左右,主体赋存于上部的第四系残坡积层中 ,受地形影响明显,面状产出,品位高、分布广,为主矿体产出层位;曼来组浅变质岩系和 花开左组细碎屑岩系为原生矿体赋矿层位,原生矿产于氧化矿之下,以近球状、未风化的残 留体形态产出;另外,局部发育沿破碎带产出的连通热泉中心的硅质脉体,紧邻硅质脉的周 围 形成狭长的脉状矿体,远离脉体则金品位迅速降低。矿体单样w(Au)最高为1 0.84 g/t,最低为0.06 g/t,一般在0.3~1.0 g/t之间,平均品位0.6 g/t。
勐满金矿具典型的浅成低温矿物组合。矿石矿物主要为黄铁矿、毒砂、自然金、褐铁矿,脉 石矿物为石英、蛋白石、玉髓、绢云母、高岭石、伊利石、冰长石、方解石等。氧化矿石呈 红色,松散的土状、砂状,主要成分为黏土矿物、铁的氧化物及少量的石英等,局部含团块 状玉髓集合体,褐铁矿及黏土矿物是主要的载金矿物;原生矿以脉状硫化物矿石(图3e、f )为主,脉体主要成分为石英、黄铁矿及少量毒砂,矿石矿物为黄铁矿、毒砂、自然金,脉 石矿物为石英及少量绢云母、冰长石和方解石。氧化矿和原生矿中金均以不可见金的形式存 在。
![]() |
图 3勐满金矿典型浅成低温结构岩(矿)石与原生石英硫化物脉状矿石 a. 硅华垣; b. 胶状蛋白石; c. 海绵状硅华及少量叶片状方解石; d. 角砾状蛋白石; e、f. 原生矿石及其中的石英硫化物脉 Cal—方解石; Qz—石英; Py—黄铁矿 Fig. 3Typical epithermal texture and sulfide quartz vein type ore a. Geyserite wall; b. Colloidal opal; c. Siliceous sinter with spongy texture an d bladed calcite; d.Opal with brecciated texture; e、f. Primary sulfide gold o re Cal—Calcite; Qz—Quartz; Py—Pyrite |
![]() |
图 4硅化岩和硅质脉的采样位置 a. 勐满金矿床热水塘矿段各中段硅化岩和硅质脉体的采样位置; b. 古热泉活动中心及连 通古热泉中心的硅质脉体,沿硅质脉发育脉状 矿体; c. 连通古热泉中心的硅质脉体及脉 体周围的硅化岩 1—硅质脉体; 2—硅质团块; 3—硅质脉体采样点; 4—硅化岩采样点; 5—样品编号; 6—金品位(单位: g/t) Fig. 4Sampling locations of silicified rocks and siliceous veins a. Sampling locations of silicified rocks and siliceous veins in Reshuitang ore section, the Mengman gold deposit; b. Hot spring center and siliceous veins de rived from spring hydrothermal solution; c. Siliceous veins derived from spring hydrothermal solution and silicified rocks formed by hydrothermal alteration 1—Siliceous veins; 2—Siliceous gobbets; 3—Sampling locations of siliceous vei ns; 4—Sampling locations of silicified rocks; 5—Sample ID; 6—Tenor in gold (Unit: g/t) |
![]() |
图 5南双岭花岗岩与勐满金矿床主要岩(矿)石手表本及镜下照片 a、b. 南双岭黑云母二长花岗岩; c、d. 曼来组绢云片岩; e、f. 花开左组砂岩中硅质脉 体;g、h. 玉髓集合体gr—黑云母二长花岗岩; enc—暗色包体,主要成分为黑云母; Kf—钾长石; Pl—斜长石 ; Qz—石英; Bi—黑云母; Ms—白云母 Fig. 5Hand specimen photograph and photomicrograp HS of Nanshuangling granite a nd the Mengman gold deposit a, b. Biotite adamellite of Nanshuangling; c, d. Sericite schist of Manlai Forma tion; e, f. Siliceous veins of Huakaizuo Formation; g, h. Chalcedony; gr—Biotite adamellite; enc—Biotite enclave; Kf—K_feldspar; Pl—Plagioclase; Q z—Quartz; Bi—Biotite; Ms—Muscovite |
![]() |
图 6勐满金矿硅化岩及硅质脉体中的冰长石镜下及背散射照片 a. 硅质脉体内的冰长石微细脉; b、c. 石英颗粒中以包体形式存在的自形冰长石; d. 冰 长石的背散射电子图像 Adl—冰长石; Adl_vien—冰长石微细脉; Qz—石英 Fig. 6Adularia photomicrograp HS and BSEs of silicified rocks and siliceous vei ns in Mengman a. Adularia fine vein in siliceous veins; b, c. Euhedral adularia in quartz grai n; d. Backscattered electron image of adularia Adl—Adularia; Adl_vien—Adularia fine vein; Qz—Quartz |
![]() |
表 1冰长石的电子探针分析数据 Table 1Electron microprobe analyses of adularia |
![]() |
表 2勐满金矿与典型金(银)矿床冰长石的成分(w(B)/%)及成矿流体盐度对比表 Table 2Adularia chemical components (w(B)/%) and salinity of Mengman and some other typical gold (silver) deposits |
不同地质体的金元素含量存在一定差异。统计结果显示,硅质脉体中w(Au)为0.02 ×10-6~2.83×10-6,平均为0.27×10-6,硅化岩w(Au)为0 .01×10-6~0.95×10-6,平均为0.21×10-6,围岩w(Au) 为0~0.70×10-6,平均为0.16×10-6,表现出从硅质脉体、硅化岩到围岩 依次降低的趋势(表3,图8)。剖面上,金的含量整体表现出由热泉中心向两侧变低的趋势 , 即靠近热泉中心的硅质脉体和硅化岩的金的品位分别高于远离中心的硅质脉体和硅化岩。硅 质脉体的金品位往往低于其周围的硅化泥岩(表3,图4),这可能是由于泥化蚀变造成了金 的相对富集。
![]() |
图 7勐满金矿床硅化岩、硅质脉体、围岩(WXWY)和临沧南部花岗岩(JH1024)微量元素 蛛网图(a,c,e)和稀土元素配分 图解(b,d,f)(数据WXWY引自王翔,2008;数 据JH1024引自孔会磊等,2011;标准化数值据Sun et al., 1989) Fig. 7Primitive mantle_normalized trace element patterns (a,c,e) and chondri te _normalized REE patterns (b,d,f) for the silicified rocks, siliceous veins, wa ll rock in the Mengman gold deposit and Lincang granite (data WXWY after Wang, 20 08; data JH1024 after Kong et al., 2011; normalized data after Sun et al ., 1989) |
![]() |
图 8金在各岩(矿)石中的品位分布(a)及平均含量变化(b)(部分数据引自程琳, 2014) Fig. 8Grade distribution of gold in different rock types (a) and changes of av erage gold content (b) (some of the data after Cheng, 2014) |
![]() |
图 9勐满金矿床矿区曼来组及花开左组碎屑锆石和临沧岩体南部南双岭花岗岩代表性锆石 的阴极发光图像 ZK3611_27—曼来组碎屑锆石; ZK3414_99—花开左组碎屑锆石; FN1/NSL—南双岭花岗岩 锆石 Fig. 9Representative zircons cathodoluminescence (CL) images of Manlai formati on, Huakaizuo formation and Nanshuangling granite ZK3611_27—Detrital zircons of Manlai Formation; ZK3414_99—Detrital zircons of Huakaizuo Formation; FN1/NSL—Magmatic zircons of Nanshuangling |
![]() |
图 10勐满金矿区曼来组片岩(a、c)和花开左组砂岩(b、d)锆石U_Pb谐和图与频率曲 线图 Fig. 10U_Pb zircon concordia plots and histograms of ages in Huakaizuo Formati on (a, c)and Manlai Formation(b, d) |
![]() |
图 11南双岭花岗岩(a. 样品FN1; b. NSL)锆石U_Pb谐和图 Fig. 11U_Pb zircon concordia plots of Nanshuangling granite (a. sample of FN1, b. sample of NSL) |
本文所得数据(图10)显示,矿区曼来组样品锆石年龄峰值集中于926~991 Ma,属新元古 界 早青白口世,其中年龄最小值为481 Ma,可以近似认为是曼来组沉积成岩的下限年龄,即48 1 Ma之后外来物质对曼来组地层的形成再无贡献。花开左组样品共得锆石年龄数据69个,其 中年龄老于481 Ma,即早于曼来组下限年龄的有16个,这部分年龄信息可能是曼来组对花开 左组物源贡献的反映;位于278~214 Ma的共有45个,这部分年龄则主要与临沧花岗岩体年 龄 对应。显然花开左组源区年龄除了少部分与曼来组一致外,主要集中于278~214 Ma之间, 表明曼来组对花开左组沉积物源的贡献是有限的。
综合以上分析结果,矿区花开左组年龄主要范围与勐海花岗岩时代相一致,考虑到矿 区紧邻勐海花岗岩,因此,认为矿区花开左组沉积物源除少部分来自较老的基底之外,主要 来自于勐海花岗岩的风化产物。
地质资料显示,勐满金矿区曼来组、花开左组和表层红土中均为金的赋矿层位,地表风化的 红土型金矿按它分布的侵蚀面之下基岩地层岩性特征分为2种类型,即产于新元古界澜沧群 曼来组片岩区红土型金矿和产于中侏罗统花开左组碎屑岩区红土型金矿(《云南省勐海县勐 满金矿外围普查报告》, 2011)。产于中侏罗统碎屑岩区的红土型金矿体的厚度、品位及分 布稳定性等均不及新元古界片岩区红土型金矿,而花开左组本身金背景值也较低,说明花开 左组赋矿层位更有可能是后期热泉活动携带的含金热液在物理化学条件发生改变时,寄主于 石英、蛋白石、黄铁矿及黏土矿物中沉淀下来形成的,而并非属于原始的矿源层。
如上文所述,硅化岩和硅质脉体的微量元素及稀土元素的变化趋势均与勐海花岗岩样品JH10 24(孔会磊等, 2012)和矿区围岩WXWY(王翔, 2008)相似,且硅化岩的微量元素组成介于 围岩与硅质脉体之间,在稀土元素球粒陨石标准化配分曲线图解中表现的尤为明显(图7) 。考虑到石英容纳稀土元素的能力很弱,石英中的稀土元素含量很低,因此,硅化作用势必 会 稀释岩石的稀土元素浓度,这也就从一定程度上表明矿区硅化的花开左组砂岩正是由于受到 热泉活动带来的含硅热液的影响,先前形成的砂岩与热泉携带的含金热液发生水岩反应,使 得硅化岩中金得到富集的同时,导致形成的硅化岩中稀土元素被稀释,稀土元素在总量上亦 表现为降低。
勐满金矿区内曼来组片岩、花开左组碎屑岩和第四系表层红土中均为金的赋矿层位,金对围 岩并未表现出选择性,但是野外观察与工程揭露均显示金矿化与热泉活动有关的硅化密切相 关,因此推测热泉活动对金的活化、迁移、富集与沉淀具有极为重要的作用。矿床受热泉活 动控制作用明显,矿体多分布于古热泉活动中心及其外围,以古热泉为中心向外以此发育贵 金属带、硅帽带和硅化带(冯钞熔等, 2008)。因此,笔者认为勐满矿床为与热泉有关的浅 成低温热液矿床。
浅成低温热液矿床通常分为高硫型与低硫型两种,前者以明矾石_高岭石(±叶腊石±硬水 铝石)矿物组合为标志,后者以冰长石_绢云母(±叶片状方解石±重晶石±玉髓)矿物组 合为标志。然而,笔者认为并不能仅凭某一矿床出现明矾石和/或高岭石就断定该矿床属于 高硫 型矿床。这是因为,明矾石和/或高岭石可存在多种来源:①岩浆热液成因:高硫系统中, 酸性和氧化的富含SO2、HCl、CO2、H2S的初始流体(Ransome, 1907; Heald et al., 1987; Hedenquist et al., 1994; White et al., 1995)在上升过程中遇到大气水迅速转化成富 HCl和H2SO4的低pH、高氧化性流体,与围岩反应产生明矾石和高岭石等高硫型特征矿物 ;② 蒸汽热硫酸盐水叠加成因:低硫型系统中,由于成矿作用距离提供初始流体的岩体较远,同 样富含SO2、HCl、CO2、H2S的初始流体在到达距离地表1~2 km深度时,由于与途径 围岩的反 应已经转化为近中性的还原性流体(Barton et al., 1979; White et al., 1995),该流 体在浅部往往会发生沸腾作用,引起含H2S和CO2的蒸汽在地表附近的包气带富集,其中 的H2S经氧化作用转化成H2SO4,进一步形成蒸汽热硫酸盐水(steam_heated acid_su lfate wate r, Hedenquist et al., 1994; Ebert et al., 1997; Sillitoe, 2010),这种硫酸盐水的 pH值在2~3左右,温度接近100℃,这样在地表便可以产生高岭石和明矾石等高硫型典型矿 物( White et al., 1995);③地表风化成因:硫化物在地表的氧化作用同样可以产生明矾石和 高岭石等矿物组合(Sholeh et al., 2016)。只有第一种情况,即矿化期产生的明矾石_高 岭石等矿物组合才可作为判别高硫型矿床的依据,在进行野外工作时后2种高硫型的假象往 往被错误认识,应当注意识别。虽然在勐满金矿床尤其是光贺矿段普遍发育高岭石,但高岭 石多为蒸汽热硫酸盐水叠加成因或风化成因,并非矿化期的产物,仅在地表以叠加改造的形 式出现,而在下部及脉石中均未见到,因此,不能作为判定矿床类型的标志。冰长石只可 能在 低温和近中性环境产出,高温及酸性环境中从来都不会出现,因此冰长石的存在则可以作为 判定矿床类型的标志。勐满金矿冰长石发育,结合与冰长石共生的石英、绢云母、蛋白石、 玉髓、冰长石、黄铁矿及少量方解石等矿物组合,因此判定其为低硫型浅成低温热液矿床。 氢、氧同位素特征可以用来限定成矿流体的来源(Hedenquist et al., 1994),对位于安 第斯 山脉El Indio_Pascua地区的Pascua_Lama和日本的Nansatsu等典型高硫型矿床、美国Nevada 地区的Mule Canyony以及中国新疆西天山地区的阿希金矿等典型低硫型金矿进行分析,结果 显示,在δD_δ18O图上2种类型的矿床具有较高的区分度。在δD_δ18O图上 ,勐满金矿落于 低硫型区域,与阿希金矿、Mule Canyon等典型低硫型矿床特征相似(图 12)。综上所述,本文认为,勐满金矿为与热泉有关的 低硫型浅成低温热液矿床。
![]() |
图 12勐满金矿与典型浅成低温热液矿床氢氧同位素组成 相关矿床数据来源: 勐满金矿据杨贵来等, 2007;阿希金矿据翟伟等, 2007; Zhai et a l .,2009; Mule Canyony据John et al., 2003; Pascua_Lama 据Deyell et al., 2005; Nans atsu据Hedenquist et al., 1994; 大气降水线据Craig, 1961; 高岭石线据Savin et al., 1970;底图据Heden_ quist et al., 1994 Fig. 12δD_18O values of Mengman gold deposit and some other typical epi thermal gold deposits Reference figures, lines and fields shown include: Mengman (after Yang et al., 2 007), Axi (after Zhai et al., 2007; Zhai et al., 2009); Mule Canyony (after John et al., 2003); Pascua_Lama (after Deyell et al., 2005); Nansatsu (after Hedenqu ist et al., 1994); meteoric water line (after Craig, 1961), kaolinite li ne (after Savin et al., 1970); base map (after Hedenquist et al., 1994) |
图 13勐满金矿成矿模式图(据Sawkins, 1984; Nelson, 1988; White et al., 1995修编 )
Fig. 13Metallogenic model of the Mengman gold deposit (modified after Sawkins, 1984; Nelson, 1988; White et al., 1995)
![]() |
(2) 硅化的花开左组沉积岩物源可能来自南双岭花岗岩岩体,后期热泉活动对其进行了改造 ,使得硅化岩的地球化学性质既继承了花岗岩的特征,又有热泉活动改造的痕迹。
(3) 花开左组成矿物质主体来自于与硅化岩有关的热泉活动携带的流体,少量来自于曼来组 片岩。矿体主体形成于热泉活动时期,热泉活动携带的含金热液在流经花开左组地层时,由 于物理化学条件的改变导致了金的沉淀,并形成金矿体;后期红土化作用造成了金的进一步 富集。
(4) 勐满金矿属于典型的与热泉活动相关的低硫型浅成低温热液矿床。
志谢 野外工作的开展得到了云南黄金矿业集团股份有限公司勐满金矿工作人员的大力支 持及帮助;锆石测年得到了中国地质科学院矿产资源研究所激光多接收等离子质谱实验室的 帮助;微量元素测试得到了核工业北京地质研究院分析测试中心的帮助;电子探针分析得到 了长安大学成矿作用及其动力学开放研究实验室电子探针室的帮助;论文承蒙两位审稿专家 的评审,并提出许多建设性的意见。在此一并表示最真诚的感谢!
Bagby W C and Berger B R. 1985. Geologic characteristics of sediment_hosted, dis seminated precious_metal deposits in the western United States[J]. Reviews in Economic Geology, 2: 169_202.
Barton P B and Skinner B J. 1979. Sulfide mineral stabilities[A]. In: Barnes H L , ed. Geochemistry of hydrothermal ore deposits [C]. New York: Wiley. 278_403.
Bruguier O, Lancelot J R and Malavieille J. 1997. U_Pb dating on single detrital zircon grains from the Triassic Songpan_Ganze flysch (Central China): Provenanc e and tectonic correlations[J]. Earth and Planetary Science Letters, 152(1): 2 17_231.
Bureau of Geology and Mineral Resources of Yunnan Province. 1990. Regional geolo gy of Yunnan Province[M]. Beijing: Geological Publishing House. 1_728(in Chine se with EnglishAbstract).
Carter A and Moss S J. 1999. Combined detrital_zircon fission_track and U_Pb dat ing: A new approach to understanding hinterland evolution[J]. Geology, 27( 3): 235_238.
Chen J C. 1987. Discussion on the age division and the selects of isotopic age d etermination for granitic rock in western Yunnan[J]. Yunnan Geology, 6(2): 101 _113(in Chinese with EnglishAbstract).
Chen W J, Liu H T and Zhang D H. 2007. Fluid inclusions characteristics of the Niujuan silver deposit in Fengning, Hebei, and its geological significance[J]. Mineral Resources and Geology, 21(1): 12_16(in Chinese with EnglishAbstract).
Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C and Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrol ogica Sinica, 23(9):2085_2108(in Chinese with EnglishAbstract).
Cheng L. 2014. Geochemical characteristics and genetic analysis of Mengman Gold Deposit, Yunan Province(dissertation for master degree) [D]. Supervisor: Wang Q F. Beijing: China University of Geosciences (Beijing). 1_72 (in Chinese with Eng lishAbstract). Cline J S, Hofstra A H, Muntean J L, Tosdal R M and Hickey K A. 2005. Carlin_typ e gold deposits in Nevada: Critical geologic characteristics and viable models[ J]. Economic Geology 100th anniversary volume, 45.
Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702_1703.
Deng J, Wang Q F, Li G J, Li C S and Wang C M. 2014. Tethys tectonic evolution a nd its bearing on the distribution of important mineral deposits in the Sanj iang region, SW China[J]. Gondwana Research, 26(2): 419_437.
Deyell C L, Leonardson R, Rye R O, Thompson J F H, Bissig T and Cooke D R. 2005. Alunite in the Pascua_Lama high_sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry[J]. Econ. Geol., 100(1): 131_148.
Ebert S W and Rye R O. 1997. Secondary precious metal enrichment by steam_heated fluids in the Crofoot_Lewis hot spring gold_silver deposit and relation to pale oclimate[J]. Econ. Geol., 92(5): 578_600.
Etoh J, Izawa E and Taguchi S. 2002. A fluid inclusion study on Columnar Adulari a from the Hishikari low_sulfidation epithermal gold deposit, Japan[J]. Resour ce Geology, 52(1): 73_78.
Fan H R, Xie Y H, Zheng X Z and Wang Y T. 2000. Ore_forming fluids in hydrotherm al breccia_related gold mineralization in Qiyugou, Henan Province[J]. Acta Pet rologica Sinica, 16(4): 559_563(in Chinese with EnglishAbstract).
Fan L, Wang S Y and Liao Y W. 2002. Typical features of adularia and its marking role in gold prospecting[J]. Journal of Xinjiang University(Natural Science E dition), 19(2): 148_150(in Chinese with EnglishAbstract).
Feng C R, Wang Y B, Liu Y L, Mo Y D and Zhao H J. 2008. Mengman hot spring type Au deposit in Menghai, Xishuangbanna, Yunnan[J]. Yunnan Geology, 02: 170_174(i n Chinese with EnglishAbstract).
Heald P, Foley N K and Hayba D O. 1987. Comparative anatomy of volcanic_hosted e pithermal deposits; Acid_sulfate and adularia_sericite types[J]. Economic Geol ogy, 82(1): 1_26.
Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370(6490): 519_527.
Hedenquist J W, Matsuhisa Y, Izawa E, White N C, Giggenbach W F and Aoki M. 1994 . Geology, geochemistry, and origin of high sulfidation Cu_Au mineralization in the Nansatsu District, Japan[J]. Econ. Geol., 89(1): 1_30.
Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao X F, Cabral A R, Zeng P S, Zhou M F and Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in t he eastern Paleo_Tethys: U_Pb age and Nd_Sr isotope data from the Southern Lanca ngjiang zone, Yunnan, China[J]. Lithos, 113(3): 408_422.
Hou K J, Li Y H and Tian Y R. 2009. In situ U_Pb zircon dating using laser ablat ion_multi ion counting_ICP_MS[J]. Mineral Deposits, 28 (4):481_492(in Chinese with EnglishAbstract).
John D A, Hofstra A H, Fleck R J, Brummer J E and Saderholm E C. 2003. Geologic setting and genesis of the Mule Canyon low_sulfidation epithermal gold_silver de posit, North_central Nevada[J]. Econ. Geol., 98(2): 425_463.
Kong H L, Dong G C, Mo X X, Zhao Z D, Zhu D C, Wang S, Li R and Wang Q L. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province: Co nstraints from geochemistry,zircon U_Pb geochronology and Hf isotope[J]. Acta Petrologica Sinica, 28(5):1438_1452(in Chinese with EnglishAbstract).
Kong H L. 2011. Geochemistry, geochronology and petrogenisis of Lincang granites in southern Langcangjiang zone of Sangjiang area(dissertation for master degree )[D]. Supervisor: Dong G C. Beijing: China University of Geosciences (Beijing) . 1_73(in Chinese with EnglishAbstract).
Li B L, Ji J Q, Fu X Y, Song B, Qing J C and Zhang C. 2008. Zircon SHRIMP dating and its geological implications of the metamorphic rocks in Ailaoshan_Diancang Mountain ranges, West Yunnan[J]. Acta Petrologica Sinica, 24(10): 2322_2330(in Chinese with EnglishAbstract).
Li B L, Ji J Q, Wang D D, Gong J F and Ma Z J. 2014. Determination of Eocene_Oli gocene (30_40 Ma) deformational time by zircon U_Pb SHRIMP dating from leucocrat ic rocks in the Ailao Shan_Red River shear zone, Southeast Tibet, China[J]. In ternational Geology Review, 56(1): 74_87.
Li C C, Lü X B, Yang Y S and Gao R Z. 2016. Fluid inclusions and metallogenic m e chanism of Guliku Au_Ag deposit in northern Daxinganling[J]. Geological Sc ience and Technology Information, 35(2): 152_160(in Chinese with EnglishAbstract).
Li N, Lai Y, Lu Y H and Guo D S. 2008. Study of fluid inclusions and ore genetic type of the Qiyugou gold deposit, Henan[J]. Geology in China, 06: 1230_1239(i n Chinese with EnglishAbstract).
Li R B, Pei X Z, Liu Z Q, Ding S P, Liu Z G, Zhang X F, Chen G C, Chen Y X and W ang X L. 2010. Basin_Mountain Coupling relationship of foreland basins between D abashan and Northeastern Sichuan: The evidence from LA_ICP_MS U_Pb dating of the detrital zircons[J]. Acta Geologica Sinica, 84(8): 1118_1134(in Chinese with EnglishAbstract).
Li R W, Meng Q R and Li S Y. 2005. Coupling of the Jurassic and Carboniferous ba sins with the orogens in the Dabie Shan and adjacent area: constraints from sedi mentary record[J]. Acta Petrologica Sinica, 21(4): 1133_1143(in Chinese with E nglishAbstract).
Liu J L, Wang A J, Cao S Y, Zou Y X, Tang Y and Chen Y. 2008. Geochronology and tectonic implication of migmatites from Diancangshan, Western Yunnan, China [J ]. Acta Petrologica Sinica, 24(3): 413_420(in Chinese with EnglishAbstract).
Ludwig K R. 2003 Isoplot/Ex, Version 3: A Geochronological Toolkit For Microsoft Excel: Berkeley[J]. California, Geochronology Center Berkeley.
Mo X X, Lu F X, Sheng S Y, Zhu Q W, Hou Z Q, Yang K H, Deng J F, Liu X P, He C X , Lin P Y, Zhang B M, Tai D Q, Chen M H, Hu X S, Ye S, Xue Y X, Tan J, Wei Q R a nd Fan L. 1993. Sanjiang Tethyan volcanism and related mineralization[M]. Be ijing: Geological Publishing House. 1_267 (in Chinese).
Mo X X, Shen S Y, Zhu Q W, Xu T R, Wei Q R, Tan J, Zhang S Q and Cheng H L. 1998 . Volcanic rock_ophiolite and mineralization in the Middle_southern part of Sanj iang Region[M]. Beijing: Geological Publishing House. 1_128.(in Chinese).
Muntean J L, Cline J S, Simon A C and Longo A A. 2011. Magmatic_hydrothermal ori gin of Nevadas Carlin_type gold deposits[J]. Nature Geoscience, 4(2): 122_12 7.
Nelson C E. 1988. Gold deposits in the hot spring environment[A]. In Shafer RW e d., Bulk Mineable Precious Metal Deposits of the Western United States[C]. Sym posium Proceedings Geological Society of Nevada. 417_431.
Peng T P,Wang Y J,Fan W M,Liu D Y,Shi Y M and Miao L C. 2006. The SHRIMP zir con U_Pb dating of the felsic igneous rocks from southern Lancangjiang and its t ectonic implications[J]. Science in China (Series D), 36(2): 123_132(in Chines e).
Qi J Z, Ma Z R and Li L. 2004. Fluid evolution of Qiyugou cryptoexplosive brecci a type gold deposit, Henan[J]. Gold Geology, 10(4): 1_10(in Chinese with Engli shAbstract).
Radtke A S, Rye R O and Dickson F W. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada[J]. Econ. Geol., 75(5): 641_672.
Radtke A S and Scheiner B J. 1970. Studies of hydrothermal gold deposition(Ⅰ), Carlin gold deposit, Nevada, the role of carbonaceous materials in gold depositi on[J]. Econ. Geol., 65(2): 87_102.
Ransome F L. 1907. The association of alunite with gold in the Goldfield distric t, Nevada[J]. Econ. Geol., 2(7): 667_692.
Rollinson H R. 2014. Using geochemical data: Evaluation, presentation, interpret ation[M]. Second edition. London and New York: Routledge. 1_351.
Savin S M and Epstein S. 1970. The oxygen and hydrogen isotope geochemistry of c lay minerals[J]. Geochimica et Cosmochimica Acta, 34(1): 25_42.
Sawkins F J. 1984. Metal deposits in relation to plate tectonics[M]. Berlin, Heidelberg, New York, Tokyo: Springer_Verlag. 1_325.
Sholeh A, Rastad E, Huston D, Gemmell J B and Taylor R D. 2016. The Chahnaly lo w_sulfidation epithermal gold deposit, western Makran volcanic arc, southeast Ir an[J]. Econ. Geol., 111(3): 619_639.
Sillitoe R H. 2010. Porphyry copper systems[J]. Econ. Geol., 105(1): 3_41.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic ba salts: Implications for mantle composition and processes[J]. Geological So ciety, London, Special Publications, 42(1): 313_345.
Wang D D,Li B L,Ji J Q and Liu Y H. 2014. Zircon SHRIMP U_Pb geochronology an d it tectonic implication of the metamorphic rocks in Southern Lancang River tec tonic zone, West Yunnan Province[J]. Acta Petrologica Sinica, 30(9): 2725_ 2738(in Chinese with EnglishAbstract).
Wang L W, Wang Y, Yang J, Wu G Q, Li G Y and Sheng L. 2007. Pre_Mesozoic basemen t provenance tracing of the Songliao Basin by means of detrital zircon SHRIMP ch ronology[J]. Earth Science Frontiers, 14(4): 151_158(in Chinese with English a bstract).
Wang X, Luo M and Li L S. 2007. The geochemistry characteristics of particulate type of rare earth elements in gold ore of Yunnang Mengman[J]. Guangdong Trace Elements Science, 14(5): 42_48(in Chinese with EnglishAbstract).
Wang X. 2008. The analysis of Yun Nan Mengman gold deposit ore_forming meterials (dissertation for master degree)[D]. Supervisor: Luo M. Chengdu: Chengdu Univ ersity of Technology. 1_72(in Chinese with EnglishAbstract).
Wang Z L, Mao J W, Wu G G, Yang J M, Ma T L and Han C M. 2003. Geochemistry of f luid inclusions from the Shiyingtan gold deposit in Eastern Tianshan, Xinjiang[ J]. Geology and Prospecting, 39(2): 6_10 (in Chinese with EnglishAbstract).
White N C and Hedenquist J W. 1995. Epithermal gold deposits: Styles, characteri stics and exploration [J]. SEG newsletter, 23(1): 9_13.
Xu X Y and Gao C. 2013. Siliceous rocks characteristic and its relationship wit h gold mineralization of the Mengman gold deposit in Yunnan[J]. Western Resour ces, (2): 179_182(in Chinese with EnglishAbstract).
Yan Y, Lin G, Li Z A, He S J and Xu Z Y. 2003. Detrital composition of Mesozoic sandstone and its implication for provenance and tectonic evolution of Beipiao(J in_Yang) Basin, Western Liaoning Province[J]. Acta Sedimentologica Sinica, 21(3): 441_447(in Chinese with EnglishAbstract).
Yang F L, Li Z T, Zhu Q and Wu Z W. 1999. The discovery of adular and its geolog ical significance in Guliku gold(sliver) deposit[J]. Journal of Precious Metal lic Geology, 8(4): 236_240(in Chinese with EnglishAbstract).
Yang G L, Yang W G, Luo M, He Z H, Luo S S, Yang Z P and Wang X. 2007. Geochemic al characteristics and genesis of the Mengman Carlin type_like gold deposit in M enghai County, Yunnan Province[J]. Geoscience, 21(4): 667_674(in Chinese w ith EnglishAbstract).
Yu H Z, Wang Q F, Li J R, Cheng L and Zhang Y J. Metallogenesis of the Mengman h ot_spring type god deposit, southern Langcangjiang zone: Constraints by hydrothe rmal alteration and trace element composition[J]. Acta Petrologica Sinica, 33 (7): 2002_2012.
Yuan H L, Gao S, Liu X M, Li H M, Günther, D and Wu F.Y. 2004. Accurate U_Pb ag e and trace element determinations of zircon by laser ablation_inductively coupl ed plasma_mass spectrometry[J]. Geostandards and Geoanalytical Research, 28(3) : 353_370.
Yunnan Gold & Mineral Group Co., Ltd. 2011. The prospecting report in the periph eral area of Mengman gold deposit in Menghai, Yunnan Province[R]. Kunming: Yun nan Gold & Mineral Group Co., Ltd. 1_206(in Chinese).
Zhai W, Sun X M, He X P, Su L W, Wu Y L and Dong Y X. 2007. Geochemistry of ore forming fluid and metallogenic mechanism of Axi low_sulfidation gold deposit in Xinjiang, China[J]. Acta Geologica Sinica, 81(5): 659_669 (in Chinese with Eng lishAbstract).
Zhai W, Sun X M, Sun W D, Su L W, He X P and Wu Y L. 2009. Geology, geochemistry , and genesis of Axi: A Paleozoic low_sulfidation type epithermal gold deposit i n Xinjiang, China[J]. Ore Geology Reviews, 36(4): 265_281.
Zhai Y S, Yao S Z and Cai K Q. 2011. Mineral deposits (3rd edition)[M]. Be ijing: Geological Publishing House. 1_413(in Chinese).
Zhu Q W, Shen S Y, Yang K H and Xue Y X. 1991. Tectono_magmatic types of vol canic rock in Lancangjiang belt, and evolution of Tethys[A]. Contribution to t he geology of the Qinghai_Xizang(Tibet) Plateau[C]. Beijing: Geological Publis hing H ouse. 125_140(in Chinese with EnglishAbstract).
Zhang T K. 2010. Geology and geochemistry of Mesozoic granite in the Gaoligong t ectonic belt, West Yunnan(dissertation for master degree)[D]. Supervisor: Liu J L. Beijing: China University of Geosciences (Beijing). 1_52(in Chinese with Engl ishAbstract).
Zhang Y H, Zhang S H, Han Y G, Han J, Zhao Y H and Pirajno F. 2006. The adularia_calcite assemblage in Qiyugou gold_bearing breccia pipes a nd its mineralization significance[J]. Acta Petrologica et Mineralogic a, 25(1): 77_84 (in Chinese with EnglishAbstract).
附中文参考文献
陈吉琛. 1987. 滇西花岗岩类时代划分及同位素年龄值选用的讨论[J]. 云 南地质, 6(2): 101_113.
陈伟军, 刘红涛, 张德会. 2007. 河北丰宁牛圈银矿床流体包裹体特征及地质意义[J]. 矿产与地质, 21(1): 12_16.
陈衍景, 倪培, 范宏瑞, Franco Pirajno, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿 系统的流体包裹体特征[J]. 岩石学报, 23(9):2085_2108.
程琳. 2014. 云南勐满金矿床的矿床地球化学特征及成因分析(硕士论文)[D]. 导师: 王庆飞. 北京: 中国地质大学(北京). 1_72.
范宏瑞, 谢奕汉, 郑学正, 王英兰. 2000. 河南祁雨沟热液角砾岩体型金矿床成矿流体研究 [J]. 岩石学报, 16(4): 559_563.
范玲, 王士元, 廖有炜. 2002. 冰长石的标型特征及其在金矿找矿中的标志作用[J]. 新 疆大学学报(自然科学版), 19(2): 148_150.
冯钞熔, 王应宝, 李云留, 莫运东, 赵含军. 2008. 西双版纳勐海勐满热泉型金矿[J]. 云南地质, 27(2): 170_174.
侯可军, 李延河, 田有荣. 2009. LA_MC_ICP_MS 锆石微区原位U_Pb定年技术[J]. 矿床地质, 28 (4): 481_492.
孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林. 2012. 滇西三江地区临 沧花岗岩的岩石成因: 地球化学、锆石U_Pb年代学及Hf同位素约束[J]. 岩石学报, 28(5) : 1438_1452.
孔会磊. 2011. 三江地区南澜沧江带临沧花岗岩的地球化学、年代学与成因(硕士论文)[ D]. 导师: 董国臣. 北京: 中国地质大学(北京). 1_73.
李宝龙, 季建清, 付孝悦, 龚俊峰, 宋彪, 庆建春, 张晨. 2008. 滇西点苍山_哀牢山变质 岩系锆石 SHRIMP 定年及其地质意义[J]. 岩石学报, 24(10): 2322_2330.
李春诚, 吕新彪, 杨永胜, 高荣臻. 2016. 大兴安岭北段古利库金(银)矿床流体包裹体特征 与成矿机制[J]. 地质科技情报, 35(2): 152_160.
李诺, 赖勇, 鲁颖淮, 郭东升. 2008. 河南祁雨沟金矿流体包裹体及矿床成因类型研究[J ]. 中国地质, 35(6): 1230_1239.
李任伟, 孟庆任, 李双应. 2005. 大别山及邻区侏罗和石炭纪时期盆—山耦合: 来自沉积记 录的认识[J]. 岩石学报, 21(4): 1133_1143.
李瑞保, 裴先治, 刘战庆, 李佐臣, 丁仨平, 刘智刚, 张晓飞, 陈国超, 陈有●, 王学良. 2010. 大巴山及川东北前陆盆地盆山物质耦合——来自LA_ICP_MS碎屑锆石U_Pb年代学证据 [J]. 地质学报, 84(8): 1118_1134.
刘俊来, 王安建, 曹淑云, 邹运鑫, 唐渊, 陈越. 2008. 滇西点苍山杂岩中混合岩的地质年 代学分析及其区域构造内涵[J]. 岩石学报, 24(3): 413_420.
莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉, 邓晋福, 刘祥品, 何昌祥, 叶培英, 张保民, 邰道乾, 陈美华, 胡享生, 叶松, 薛迎喜, 谭劲, 魏启荣, 范例. 1993. 三江特提 斯火山作用与成矿[M]. 北京: 地质出版社. 1_267.
莫宣学, 沈上越, 朱勤文, 须同瑞, 魏启荣, 谭劲, 张双全, 程惠兰. 1998. 三江中南段火 山岩_蛇绿岩与成矿[M]. 北京: 地质出版社. 1_128.
彭头平, 王岳军, 范蔚茗, 刘敦一, 石玉若, 苗来成. 2006. 澜沧江南段早中生代酸性火成 岩SHRIMP锆石U_Pb定年及构造意义[J]. 中国科学(D辑:地球科学), 36(2): 123_132.
齐金忠, 马占荣, 李莉. 2004. 河南祁雨沟金矿床成矿流体演化特征[J]. 黄金地质, 10(4): 1_10.
王丹丹, 李宝龙, 季建清, 刘昱恒. 2014. 澜沧江构造带南段变质岩系锆石U_Pb年代学及构 造涵义[J]. 岩石学报, 30(9): 2725_2738.
王立武, 王颖, 杨静, 吴国庆, 李国艳, 盛利. 2007. 用碎屑锆石SHRIMP年代学方法恢复松 辽盆地南部前中生代基底的源区特征[J]. 地学前缘, 14(4): 151_158.
王翔, 罗梅, 于林松. 2007. 云南勐满微细粒型金矿床稀土地球化学特征[J]. 广东微量 元素科学, 14(5):42_48.
王翔. 2008. 云南勐满金矿床成矿物质来源分析(硕士论文)[D]. 导师: 罗梅. 成都: 成都理工大学. 1_72.
王志良, 毛景文, 吴淦国, 杨建民, 马天林, 韩春明. 2003. 新疆东天山石英滩金矿流体包 裹体地球化学[J]. 地质与勘探, 39(2): 6_10.
徐学员, 高超. 2013. 云南勐满金矿硅质岩特征及其与金矿化关系[J]. 西部资源, (2): 179_182.
闫义, 林舸, 李自安, 贺世杰, 徐政语. 2003. 辽西北票 (金_羊) 盆地中生代砂岩碎屑组 分对区域构造演化的响应[J]. 沉积学报, 21(3): 441_447.
杨芳林, 李之彤, 朱群, 吴振文. 1999. 古利库金(银)矿床中冰长石的发现及其地质意义[ J]. 贵金属地质, 8(4): 236_240.
杨贵来, 杨伟光, 罗梅, 和中华, 罗石生, 杨柱平, 王翔. 2007. 云南勐海勐满金矿床的地 球化学特征及成因[J]. 现代地质, 21(4): 667_674.
于华之, 王庆飞, 李建荣, 程琳, 张玉洁. 2017. 南澜沧江带勐满热泉型金矿床成矿作用: 热液蚀变与元素地球化学制约[J]. 岩石学报, 33(7): 2202_2212.
云南省地质矿产局. 1990. 云南省区域地质志[M]. 北京: 地质出版社. 1_728.
云南黄金矿业集团股份有限公司. 2011. 云南省勐海县勐满金矿外围普查报告[R]. 昆明: 云南黄金矿业集团股份有限公司. 内部资料. 1_206.
翟伟, 孙晓明, 贺小平, 苏丽薇, 吴有良, 董艺辛. 2007. 新疆阿希低硫型金矿床流体地球 化学特征与成矿机制[J]. 地质学报, 81(5): 659_669.
翟裕生, 姚书振, 蔡克勤. 2011. 矿床学[M]. 北京:地质出版社. 1_413.
朱勤文, 沈上越, 杨开辉, 薛迎喜. 1991. 澜沧江带火山岩构造_岩浆类型与特提斯演化[A ]. 青藏高原地质文集(21)—“三江"论文专辑[C]. 北京: 地质出版社. 125_140.
张同凯. 2010. 滇西高黎贡构造带中生代花岗岩地质与地球化学[D]. 导师: 刘俊来. 北京: 中国地质大学(北京). 1_52.
张元厚, 张世红, 韩以贵, 韩军, 赵英豪, Franco Pirajno. 2006. 祁雨沟含金角砾岩筒中 的冰长石方解石组合及其矿床地质意义[J].岩石矿物学杂志, 25(1): 77_84. ??
??
??
??