(1 成都理工大学地球科学学院, 四川 成都610059; 2 中国地质科学院矿产资源研究 所 国土资源部成矿作用与资源评价重点实验室, 北京100037; 3 西南交通大学地球科 学与环境工程学院, 四川 成都611756; 4 西藏中瑞矿业发展有限责任公 司, 西藏 拉萨850000)
第一作者简介丁帅, 男, 1987年生, 博士研究生, 矿物学、岩石学、矿床学专业。 Email: 782628728@qq.com
**通讯作者唐菊兴, 男, 1964年生, 研究员, 博士生导师, 主要从事矿床学及矿产 勘查研究。 Email: tangjuxing@126.com
收稿日期2016_08_18
本文获地调项目《西藏雄村_普桑果斑岩_矽卡岩型铜多金属矿成矿地质背景与找矿潜力调 查》(编号: 12120114068401)和西藏中瑞矿业发展有限责任公司项目(XZZR_2015)联合资助
of Sinongduo epithermal Ag_Pb_Zn deposit
(1 College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 2 MLR Key Laboratory of Metallogeny and Mineral Resource Assessm ent, Institute of Mineral Resources, CAGS, Beijing 100037, China; 3 Faculty of G eo_ sciences and Environmental Engineering, Southwest Jiaotong University , Chengdu 611756, Sichuan, China; 4 Zhongrui Mining Co., Ltd., Lhasa 850000, Tibet , China)
西藏斯弄多银铅锌矿床位于冈底斯成矿带的中西段,是目前在冈底斯北缘铅锌成矿带林子宗 群火 山岩中首次发现并确立的低硫化浅成低温热液型银铅锌矿床(唐菊兴等,2016)。整个冈底 斯成矿带挟持于班公湖_怒江缝合带与雅鲁藏布江缝合带之间,近东西向延伸超过2000 km, 是受特提斯洋演化以及印度大陆与亚洲大陆碰撞作用控制形成的巨型成矿带。包括驱龙、甲 玛、雄村、蒙亚啊、亚贵拉、洞中拉_洞中松多等多个与碰撞_后碰撞钙碱性岩浆相关的世界 级斑岩_矽卡岩型铜多金属矿床(Hou et al., 2009; 郎兴海等, 2012; 唐菊兴等, 2012; 2 014b; Tang et al., 2015; Zheng et al., 2015)。前人对这些矿床已有研究,并 取得了重要的成果,但对于浅成低温热液型矿床的研究相对有限。西藏地区发现的浅成低温 热 液型矿床包括班公湖_怒江成矿带上与早白垩世高钾钙碱性陆缘弧岩浆相关的铁格隆南Cu(A u)矿床(唐菊兴等, 2014a; 杨超等, 2014; 方向等, 2015; 李光明等, 2015)、冈底斯成 矿带上与早_中侏罗世钙碱性岛弧火山_岩浆相关的雄村_洞嘎Cu、Au(Ag、Pb、Zn)矿床( 唐菊兴等, 2014b)及上侏罗统—下白垩统沉积建造容矿的弄如日Au矿床(刘云飞等,2012 )。这些不同背景、不同时代形成的矿床表明青藏高原具有寻找浅成低温热液型矿床的广阔 前景。
西藏斯弄多银铅锌矿床赋存于南木林地区林子宗群陆相火山岩中(王银川等,2012; 刘波等 , 2010)。该矿床最早为西藏地质二 队于2008年通过化探异常查证发现,近年来西藏中瑞矿业发展有限责任公司通过详细的地质 填图及钻探工作,共探明Ag金属量400吨,w(Ag)>100 g/t;Pb+Zn资源量超过30万 吨,w(Pb+Zn)>5%;同时圈定出外围浅地表金异常2处,w(Au)为43×10 -9~960×10-9,显示出巨大的找矿潜力。斯弄多矿床的发现具有重要意义: ① 是在冈底斯北缘铅锌成矿带首次发现的 典型浅成低温热液型矿床,对区域找矿具有积极的指导效应; ② 矿化赋存于林子宗群火山 岩中,暗示了该套火山岩不仅是青藏高原大规模的构造岩浆事件的产物,而且也存在良好的 成矿条件。本文通过对斯弄多矿区赋矿火山岩开展精确的年代学及岩石地球化学分析,限定 了火山活动时代及其成矿地质背景,并初步探讨了火山作用与成矿的关系。
![]() |
图 1西藏地区构造分区图(a, 据Hou et al., 2004修改)及冈底斯北带区域地质及矿床分 布图(b, 据Zheng et al., 2015修改) Fig.1Sketch tectonic map in Tibet(a, modified after Hou et al., 2004) and sim plified regional geological map of northeastern Gangdese belt with ore deposit s(b, modified after Zheng et al., 2015) |
研究区出露石炭系—二叠系(C1—P1)碳酸盐_碎屑岩建造,中生界(J3—K1)浅 海相至海陆交互相碎屑岩、碳酸盐岩建造及古新统典中组(E1d)火山岩,火山岩岩 性主要为流纹斑岩、晶屑凝灰岩、火山角砾岩、英安岩等(图2a),这套火山岩也是斯弄多 矿床最主要的含矿岩系。邻区纳如松多隐爆角砾岩型银铅锌矿床、则学热液脉型铅锌银矿床 及拉宗热液脉型银铅锌矿床均产于这套火山岩中(纪现华等,2012;2014)。矿区内主要地 质体及矿体分布受火山机构控制。该 套火山岩表现为陆相中心_裂隙式喷发特征,呈火山角砾岩_流纹斑岩_凝灰岩岩相分带特征 ,整体以爆发相为主, 次为溢流相和火山沉积相。围绕古火山口发育多条放射状同生断裂构 造,并堆积有大量条带状、层纹状硅质沉积物,根据产状划分为南北向和东西向2组断裂, 其 中南北向断裂为本区主要构造,断裂带中可见石英晶簇和晶洞,表现出张性断裂特征,是热 液脉型矿体的主要赋存空间。
矿区侵入岩主要为黑云母花岗斑岩,呈岩脉、岩枝分布在中部和南侧(图2a)。
![]() |
图 2斯弄多矿区地质图(a)及A_A剖面图(b) Fig. 2Geological map (a) and section A_A (b) of the Sinongduo deposit |
凝灰岩呈晶屑凝灰结构,块状构造,主要由火山灰(70%)、石英晶屑(20%)与长石晶屑( 10%)及少量次生矿物等组成,石英晶屑呈灰白色、浅灰色,他形粒状,破碎,大小1~2 mm ,个别达4 mm,含量约占20%;长石呈灰白色、浅灰绿色,板柱状,半自形_他形晶 ,晶形大多不完整,后期多发生绢云母化(图3c)。
英安岩表面呈紫红色,斑状结构,块状构造。斑晶主要为石英、长石、黑云母,石英呈棱锥 状,不规则粒状,粒径0.2~5 cm,约含20%。长石斑晶呈短柱状、长柱状,斑晶大小2~9 m m ,约含25%,局部发生溶蚀或黏土化。基质为长英质隐晶、微晶,含黑云母较高而显浅灰色_ 深灰色,基质含量35%。其他暗色矿物(角闪石)约占5%(图3d)。
![]() |
图 3斯弄多矿区岩石分布及特征图 a. 斯弄多矿区主要岩性分布及采样位置图; b. 流纹斑岩镜下照片,发育流纹构造; c. 凝灰 岩镜下照片,发育绢云母化; d. 英安岩镜下照片 Q—石英; Pl—斜长石; Ser—绢云母; Hb—角闪石; Py—黄铁矿 Fig. 3The distribution and characteristics of rocks in the Sinongduo deposit a. The lithologic distribution and sampling location in the Sinongduo deposit; b . The rhyolite porphyry under polarized light with rhyolitic structure; c. The tuff under polarized light with sericitization; d. The dacite under polarized l ight Q—Quartz; Pl—Plagioclase; Ser—Sericite; Hb—Hornblende; Py—Pyrite |
![]() |
图 4斯弄多矿区火山岩锆石Cl图像、测点及U_Pb年龄测试结果 Fig. 4Zircon CL images with analytical spots and U_Pb ages of volcanic rocks from the Sinongduo deposit |
对凝灰岩(NY1)样品14个锆石颗粒进行了U_Pb年龄测定(表1)。其中w(Th)、 w(U)分别在304.5×10-6~1363.1×10-6和261.4×10-6~731 ×10-6之间;Th/U比值变化在0.9~3.4之间,获得206Pb/23 8U年龄在63.4~66.7 Ma之间,加权平均年龄(65.15±0.69) Ma(MSWD=0.66) (图5c)。
英安岩(NOD)样品16个锆石定年结果见表2,获得w(Th)、w(U)分别在404 .4×10-6~2160.1×10-6和219.4×10-6~1412.6×10-6之 间;Th/U比值均较高,变化在1~2.5之间,获得206Pb/238U年 龄在61.3~63.5 Ma之间,加权平均年龄(62.4±0.55) Ma(MSWD=0.32)(图5d) ,为晚期喷发覆盖于流纹斑岩之上。
斯弄多矿区4件火山岩样品成岩时代相近,集中在62~65 Ma之间,同时,结合岩相学、锆石 形态及Th/U比值,确认斯弄多矿区不同岩性火山岩属于同一构造岩浆活动产物,这些锆石定 年 结果能代表其成岩时代,记录了冈底斯成矿带在主碰撞期(65 Ma)存在一次大规模构造 岩浆事件。
斯弄多矿区典中组火山岩地球化学分析数据见表2。这些岩石样品总体表现出富硅(w( SiO2)=71.81%~86.24%)、钾(w(K2O)=3.05%~8.65%)、贫镁、钛、磷 (w(MgO)=0.04%~0.46%; w(TiO2)=0.05%~0.24%;w(P2O 5)=0.02%~0.05%)、过铝质(A/CNK=0.81~2.76)特征。在火山岩 TAS图解(图6a)中(Le Maitre et al., 1989),14个岩石样品大都位于流纹岩区域,这 可能与岩石遭遇后期硅化相关;因而采用Nb/Y_Zr/Ti微量元素对岩石进行分类,在图解(图 6b)中(Winchester et al., 1977),火山岩样品相对集中,落入流纹岩+英安岩与碱性 流纹岩过 渡 区,这与野外定名相一致。在K2O_SiO2和A/NK_A/CNK图解(图6c、d)中(Peccerillo et al., 1976), 大部分样品均属于高钾钙碱性_钾玄岩和过铝质岩石系列,与冈底斯 地区早期研究数据一致(莫宣学等,2009)。微量元素方面,所有岩石相对富集轻稀土元素 (∑LREE/∑HREE=3.39~13.21)和大离子亲石元素(LILE:如Rb、K、Sr);亏损重 稀土元 素(LaN/YbN=3.02~16.47)和高场强元素(HFSE:Nb、Ta、Ti、P);Ce无异常,Eu 呈明显负异常(图7a、b),显示出典型弧岩浆地球化学特征(Stolz et al., 1996)。
![]() |
图 5斯弄多矿区火山岩锆石U_Pb谐和图及206Pb/238U加权平均年龄 a、b. 流纹斑岩; c. 凝灰岩; d. 英安岩 Fig. 5Zircon U_Pb concordia diagrams and weighted mean 206Pb/ 238U ages of the volcanic rocks from the Sinongduo deposit a,b. Rhyolitic; c. Tuff; d. Dacite |
就斯弄多矿区而言,本文获得矿区主要赋矿火山岩锆石U_Pb年龄在62~65 Ma之间,而项目 组最近获得斯弄多矿区与矿化相关的2件伊利石Ar_Ar年龄分别为(63.01±0.74) Ma和 (60.85±0.74) Ma(另文发表),代表了其成矿年龄,说明斯弄多低硫化浅成低温热液型 矿床形 成于林子宗群火山岩所代表的印度_亚洲主碰撞时期 (65~60 Ma), 与区域成岩成矿时代相一致。
![]() |
图 6斯弄多矿区火山岩地球化学图解 a. 火山岩TAS图解(底图据Le Maitre et al., 1989); b. Nb/Y_Zr/Ti岩石类型判别图解( 底图据Winchester et al., 1977); c. SiO2_K2O; d. A/CNK (x(Al2O3 )/ x(CaO+Na2O+K2O))(A/NK (x(Al2O3/x(Na2O+K2O)) (底图据Peccerillo et al., 1976) Fig. 6Geochemical diagram of volcanic rocks from the Sinongduo deposit a. TAS diagram (after Le Maitre et al., 1989); b. Rock type discrimination dia g ram of Nb/Y versus Zr/Ti (after Winchester et al., 1977); c. SiO2 versus K 2O ; d. A/CNK (x(Al2O3)/x(CaO+Na2O+K2O)) versus A/NK (x (Al2O3/x(Na2O+K2O)) (after Peccerillo et al.,1976) |
西藏冈底斯地区是中、新生代火山作用最为强烈造山区之一,带内分布着大面积不同时期不 同类型的火山岩系,包括下(中)侏罗统叶巴组、上侏罗统—下白垩统桑日群及古近系林子 宗 群火山岩,是对新特提斯洋北向俯冲直至印度_亚洲大陆完成对接碰撞等一系列过程的火山_ 岩浆作用的积极响应(朱弟成等,2005; 莫宣学等,2003),同时也造就了冈底斯带大规模 成 矿作用(唐菊兴等,2014b; 侯增谦等,2006),构成了与早侏罗世—晚侏罗世岛弧型中酸 性火山岩_浅成岩建造有关的斑岩型铜、金、银、铅锌矿床成矿亚系列(雄村)和与古新世 — 始新世中酸性火山_中浅成岩浆建造有关的斑岩_矽卡岩型铅锌、银、钼、钨、铁矿床成矿亚 系列(亚贵拉、洞中松多_洞中拉、沙让等)(唐菊兴等,2014b)。而以冈底斯北缘铅 锌成矿带为标志的印度_亚洲碰撞期成矿事件与林子宗群火山活动在时空上耦合关系则更加突出了 大规模火山作用对成矿的贡献(Wang et al., 2015)。
![]() |
图 7斯弄多矿区火山岩稀土元素Cl球粒陨石标准化配分曲线(a, 标准化值据Boynton,19 84)及微量元素原始地幔标准 化蛛网图(b, 标准化值据Sun et al.,1989) Fig. 7Cl_chondrite_normalized REE patterns (a, normalization values after Bo ynton,1984)and primitive mantle_normalized trace element spidergrams (b, nor malization values after Sun et al.,1989) of volcanic rocks from the Sinongduo d eposit |
![]() |
图 8林子宗群火山岩及冈底斯北缘主要铅锌矿床 年龄分布直方图(数据据Wang et al., 2015及参考文献整理) Fig. 8Histogram of compiled age data of the Linzizong volcanic rocks and Pb_ Zn deposits in Gangdise (Data sources are from Wang et al., 2015 and reference s) |
本文获得斯弄多矿区主要赋矿围岩(典中组火山岩)属高钾钙 碱性_钾玄岩和过铝质岩石系列(图6c、d),相对富集轻稀土元素(∑LREE/∑HREE=3.39 ~13.21)和大离子亲石元素(LILE:如Rb、K、Sr);亏损重稀土元素(LaN/YbN=3. 02~16.47)和高场强元素(HFSE:Nb、Ta、Ti、P)(图7a、b),显示出弧火山岩特征( Stolz et al., 1996)。然而,这似乎与前人研究认为典中组火山岩是印度_亚洲碰撞阶段 的产物相矛盾(莫宣学等, 2003;2009;Mo et al., 2008)。笔者认为这可能与俯冲洋壳 滞后于地幔区有关。首先,冈底斯地区典中组火山岩Nd_Sr_Pb同位素体现大洋岩石圈大陆岩 石圈地幔混合趋势,相比年波组和帕那组体现出更多幔源成分特征(莫宣学等, 2003;2009 ),说明 林子宗群典中组火山岩仍显示出了俯冲体制下地球动力学环境中所具备的岩石特征。其次, 岩石相对亏损HREE和HFSE (Nb、Ta、Ti)元素,表明源区存在仍存在俯冲板片脱水产生的 流体交代作用 (Rapp et al., 2003),这种岩浆源岩区应对应在榴辉岩相或角闪榴辉岩相 的变质压力条件下,其深度至少可达100 km以下(Manning, 2004)。虽然始新世(65~60 Ma)印度与亚洲大陆强烈碰撞可能引起加厚地壳发生榴辉岩相部分熔融,但这种机制下的岩 浆多体现出板内环境下岩石特征,如年波组和帕那组,而本文获得典中组火山岩在Y+Nb_Rb 图解(图9a)中均落在火山弧与同碰撞火山岩过渡区内,具有两者共同的特征,说明新特提斯 洋在65 Ma时正由俯冲向碰撞发生转化,因而典中组火山岩表现出弧火山岩石特征。另外, 在Ta/Yb_Th/Yb图解(图9b)中,斯弄多矿区火山岩样品均位于活动大陆边缘,具有洋_陆俯 冲环境下岩石地球化学特征,更加说明了典中组火山岩形成于滞后洋壳与地幔区岩石相互作 用的陆缘弧背景下。
(2) 流体包裹体及同位素证据显示林子宗群火山岩为矿床形成提供必要的热源与成矿物质 ,是火山作用过程中相伴的地热活动驱动地下热水萃取火山岩中物质成矿。
(3) 矿区火山岩相对富集轻稀土元素(∑LREE/∑HREE=3.39~13.21)和 大离子亲石元素(LILE: 如Rb、K、Sr);亏损重稀土元素(LaN/YbN=3.02~16.47)和高场强元素(HFSE: Nb、Ta、Ti、P),显示出弧火山岩特征,暗示了该区成岩成矿形成于滞后洋壳与地幔区岩 石相互作用的陆缘火山弧背景下。
图 9斯弄多矿区火山岩地球化学图解
a. Rb_(Y+Nb) (底图据Pearce, 1996), b. Ta/Yb_Th/Yb(底图据Pearce, 1983)
Fig. 9Geochemical discrimination diagrams of volcanic rocks from the Sinongd uo deposit
a. Rb_(Y+Nb) diagram (base map after Pearce, 1996), b. Ta/Yb_Th/Yb diagram (base map after Pearce, 1983)
![]() |
Belousova E, Suzanne G W, OReilly S Y and Fisher Y. 2002. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy Petrology, 143: 602_622.
Berge B R and Henley R W. 1989. Adavances in the understanding of epithennal gol d_silver deposits, with special reference to the western united states[J]. Eco n. Geol., Monnograph 6: 405_423.
Boynton W V. 1984. Cosmo chemistry of the rare earth elements: Meteorite studies : Rare earth element geochemistry[M].Tucson, Arizona University, 63_114.
Chen J S, Huang B C, Yi Z Y, Yang L K and Chen L W. 2014. Paleomagnetic And 40Ar/39Ar geochronological results from the Linzizong group, Lin zhou basin, Lhasa te rrane, Tibet: Implications to paleogene paleolatitude and onset of the India_Asi a collision[J]. Journal of Asian Earth Sciences, 96: 162_177.
Cooke D R and Deyell C L.2003. Descriptive names for epithermal deposits: Their implications for inferring fluid chemistry and ore genesis[A]. In: Eliopoulos E A, ed. Proceedings of the seventh biennial SGA meeting_mineral exploration a nd S ust_ainable development[C]. Rotterdam : Mill_press Science Publishers. 457 _460.
Corbett G. 2002. Epithennal gold for explorationists[J]. AIG Journal_Applied G eoscientifie Practice and Research in Anstralia, 1: 1_26.
Ding L, Kapp P, Zhong D L and Deng W M. 2003. Cenozoic volcanism in Tibet: Evide nce for a transition from oceanic to continental subduction[J]. Journal of Pet rology, 44: 1833_1865.
Ding L, Kapp P and Wan X Q. 2005. Paleocene_Eocene record of ophilite obduction and initial India_Asia collision, south central Tibet[J]. Tectonic, 24: 1_ 18.
Dong G C, Mo X X, Zhao Z D, Wang L and Zhou S. 2005. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou Basin, northern Lhasa, Tibet, China[J]. Geology Bulletin of China, 24(6): 549_557 (in Chinese with English Abstract).
Einaudi M T, Hedenquist J W and Inan E E. 2003. Sulfidation state of fluids in a ctive and extinct hydrothermal system: Transitions from porphyry to epithermal e nvironments[J]. Society of Economic Geologists Special Publication, 10: 28 _314.
Fang X, Tang J X, Song Y, Yang C, Ding S, Wang Y Y, Wang Q, Sun X G, Li Y B, Wei L J, Zhang Z, Yang H H, Gao K and Tang P. 2015. Formationepoch of the south Tie gelong supelarge epithermal Cu (Au_Ag) deposit in Tibet and its geological impli cations[J]. Acta Geoscientica Sinica, 36(2): 168_176(in Chinese with English a bstract).
Fei G C, Wen C Q, Zhou X, Wu P Y and Wen Q. 2009. Laser microprobe 40 Ar_39Ar geochronology of quartz from Dongzhongla lead_zinc deposit in Tibet and its signifi cance[J]. Journal of Mineralogy and Petrology, 30(3): 38_43(in Chinese with En glish Abstract).
Fu Q, Huang K X, Zheng Y C, Yang Z S and Duan L F. 2015. Ar_Ar age of muscovite from skarn orebody of the Mengyaa lead_zinc deposit in Tibet and its geodynamic significance[J]. Acta Geologica Sinica, 89(3): 569_582(in Chinese with Englis h Abstract).
Gao Y M, Chen Y C and Tang J X. 2010. SHRIMP zircon U_Pb and amphibole 40Ar_39Ar dating of amphibole diorite from Sharang porphyry moly bdenum deposit in Gongbo gyamda County, Tibet, and its geological implications[J]. Mineral Deposits, 29 (2): 323_331(in Chinese with English Abstract).
Heald P, Foley N K and Hayba D O. 1987. Comparative anatomy of volcanic hosted e pithermal deposits_acid sulphate and adularia_sericite types[J]. Econ. Geol., 80: 1_26.
Hendenquist J W. 1987. Volcanic_related hydrothennal systenrs in the circum_paci fie basin and their potential for mineralization[J]. Mining Geology, 37(3) : 347_364.
Hendenquist J W, Arribas R A and Gonzalez U E. 2000. Exploration for epithermal gold deposit[J]. Reviews in Econ. Geol., 13: 245_277.
Hoskin P W O and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[A]. In: Manchar J M and Hoskin P W O, eds. Zircon: Re vi ews of mineralogy and geochemistry: Chantilly, VA[C]. Mineralogical Societ y of America, 53: 27_62.
Hou K J, Li Y H, Zhou, T J, Qu X M, Shi Y R and Xie G Q. 2007. Laser Ablation_MC _ICP_MS technique for Hf isotope microanalysis of zircon and its geological appl ications[J]. Acta Petrologlca Sinica, 23(10): 2595_2604(in Chinese with Englis h Abstract).
Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusive s generated during Mid_Miocene East_West extension in southern Tibet[J]. Earth and Planetary Science Letters, 220: 139_155.
Hou Z Q, Yang Z S, Xu W Y, Mo X X, Ding L, Gao Y F, Dong F L, Li G M, Qu X M, Li G M, Zhao Z D, Jiang S H, Meng X J, Li Z Q, Qin K Z and Yang Z M. 2006. Metallo genesis in Tibetan collisional orogenic belt:Ⅰ. Mineralization in main collisio nal orogenic setting[J]. Mineral Deposits, 25(4): 337_358(in Chinese with Engl ish Abstract).
Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y F and Za w K. 2009. The Miocene Gangdese porphyry copper belt generated during post_colli sional extension in the Tibetan orogeny[J]. Ore Geology Reviews, 36: 25_31.
Ji X H, Yang Z S, Yu Y S, Shen J F, Tian S H, Meng X J, Li Z Q and Liu Y C. 2012 . Formation mechanism of magmatic rocks in Narusongduo lead_zinc deposit of Tibe t: Evidence from magmatic zircon[J]. Mineral Deposits, 31(4): 758_774(in C hinese with English Abstract).
Ji X H, Meng X J, Yang Z S, Zhang Q, Tian S H, Li Z Q, Liu Y C and Yu Y S. 2014. The Ar_Ar geochronology of sericite from the cryptoexplosive breccia type Pb_Zn deposit in Narusongduo, Tibet and its geological significance[J]. Geology And Exploration, 50(2): 281_290(in Chinese with English Abstract).
Kesler S E and Wilkinson B H. 2009. Resources of gold in Phanerozoic epithermal deposits[J]. Econ. Geol., 104: 623_633.
Lang X H, Tang J X, Chen Y C, Li Z J, Huang Y, Wang C H, Chen Y, Zhang L and Zho u Y. 2012. Neo_Tethys mineralization on the southern margin of the Gangdise meta l logenic belt, Tibet, China: Evidence from Re_Os ages of Xiongcunore body No.Ⅰ[ J ]. Earth Science_Journal of China University of Geosciences, 37(3): 515_525(in Chinese with English Abstract).
Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre M J, Lebas M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Wooley A R and Zanettin B. 1989. A classif ication of igneous rocks and glossary of terms[M]. London: Blackwell. 28.
Lee H Y, Chuang S L, Lo C H, Ji J Q, Lee T Y, Qian Q and Zhang Q. 2009. Eocene N eotethyan slab breakoff in southern Tibet inferred from the Linzizong[J]. Tect onophysics, 477: 20_35.
Li G M, Zhang X N, Qin K Z, Sun X G, Zhao J X, Yin X B, Li J X and Yuan H S. 201 5. The telescoped porphyry_high sulfidation epithermal Cu(_Au) mineralizatio n of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang terra ne, Central Tibet: Integrated evidence from geology[J]. Acta Petrologica Sinic a, 31(8): 2307_2324(in Chinese with English Abstract).
Lindgren W. 1922. A suggestion for a terminology of certain mineral deposits[J ]. Econ. Geol., 17: 292_294.
Lindgren W. 1933. Mineral deposits[M]. 4th Ed. NewYork: McGraw Hill. l_930.
Liu B, Dong S L, Li G M and Zhang H. 2010. The geochemical characteristics and a ge of igneous from the Sinongduo Pb_Zn deposit and its geological significance, Tibet[J]. Mineral Deposits, 29(S1): 472_473(in Chinese).
Liu Y F, Yang Z M, Xie Y L, Zhou P, Du D H, Li Y X, Li Q Y, Qu H C and Xu B. 201 2. Zircon SHRIMP U_Pb age and geochemistry of intrusive rocks from Nongruri gold deposit, Gangdese, Tibet[J]. Mineral Deposits, 31(4): 727_744(in Chinese with English Abstract).
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oc eanic crust recycling_induced melt_peridotite interactions in the Trans_North Ch inaorogen: U_Pb dating, Hf isotopes and trace elements in zircons from mantle xe noliths[J]. Journal of Petrology, 51(1_2): 537_571.
Manning C E. 2004. The chemistry of subduction_zone fluids[J]. Earth and Plane tary Science Letters, 223(1_2): 1_16.
Mo X X, Zhao Z D, Deng J F, Dong G C, Zhou S, Guo T Y, Zhang S Q and Wang L L. 2 003. Response of volcanism to the India_Asia collision[J]. Earth Science Front ie rs (China University of Geosciences , Beijing), 10(3): 135_148(in Chinese with E nglish Abstract).
Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S and Ke S. 2008. Contributio n of syncollisional felsic magmatism to continental crust growth: A case study o f the paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical G eology, 250: 49_67.
Mo X X, Zhao Z D, Yu X H, Dong G C, Li Y G, Zhou S, Liao Z L and Zhu D C. 2009. Cenozoic collisional_postcollisional igneous rocks in the Tibetan plateau[M]. Beijing: Geological Publishing House. 1_396(in Chinese with English Abstract).
Moncada D, Mutchler S, Nieto A, Reynolds T J, Rimstidt J D and Bodnar R J. 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag_Au deposi ts at Guanajuato, Mexico: Application to exploration[J]. Journal of Geochemica l Exploration, 114: 20_35.
Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, Drr W, Kamo S L, Ke nnedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y S, Gtze J, Hger T , Krner A and Valley J W. 2008. Zircon M257_A homogeneous natural reference materia l for the ion microprobe U_Pb analysis of zircon[J]. Geostandards and Geoanaly tical Research, 32(3): 247_265.
Pearce J A. 1983. Role of the sub_continental lithosphere in magma genesis a t ac tive continental margins[A]. In: Hawkeswrth C J and Norry M J, eds. Continent al basalts and mantle xenoliths: Nantwich, Shiva[M]. 230_249.
Pearce J A. 1996. Source and settings of granitic rocks[J]. Episodes, 19(4): 1 20_125.
Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc_alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralog y and Petrology, 58: 63_81.
Rapp R P, Shimizu N and Norman M D. 2003. Growth of early continental crust by P artial melting of eclogite[J]. Nature, 425(6958): 605_609.
Richards J P. 2013. Giant ore deposits formed by optimal alignments and combinat ions of geological processes[J]. Nature Geoscience, 6(11): 911_916.
Sidorov A A, Volkov A V and Savva N E. 2015. Volcanism and epithermal deposi ts[J]. Journal of Volcanology and Seismology, 9(6): 349_357.
Sillitoe R H and Hedenquist J W. 2003. Linkages between volcanotectonic settings , ore fluid compositions, and epithermal precious metal deposits[J]. Society o f Economic Geologists Special Publication, 10: 315_343.
Sillitoe R H. 2015. Epithermal paleosurfaces[J]. Mineralium Deposita, 50(7): 7 67_793.
Simmons S F, Arehart G, Simpson M P and Mauk J L . 2000. Origin of massive calci te veins in the golden cross low_sulfidation, epithermal au_ag deposit, New Zeal and[J]. Econ. Geol., 95(1): 99_112.
Simmons S F, White N C and John D A. 2005. Geological characteristics of epither mal precious and base metal deposits[J]. Econ. Geol. 100th Anniversary Volume, 485_522.
Stolz A J, Jochum K P, Spettel B and Hofmann AW. 1996. Fluid and melt_related en richment in the subarc mantle: evidence from Nb/Ta variations in island arc basa lts[J]. Geology, 24: 587_590.
Sun S S and McDonough W. 1989. Chemical and isotopic systematics of oceanic basa lts: Implications for mantle composition and processes[J]. Geological Soci ety, 42: 313_345.
Tang J X, Chen Y C, Wang D H, Wang C H, Xu Y P, Qu W J, Huang W and Huang Y. 200 9. Re_Os dating of molybdenite from the Sharang porphyry molybdenum deposit in G ongbogyamda County, Tibet and its geological significance[J]. Acta Geologica S inica, 83(5): 698_704(in Chinese with English Abstract).
Tang J X, Dur J, Liu H F, Lang X H, Zhang J S, Zheng W B and Ying L J. 2012. Min erogenetic series of ore deposits in the east part of the Gangdise mtallogenic b elt[J]. Acta Geoscientica Sinica, 33(4): 393_410(in Chinese with English abstr act).
Tang J X, Sun X G, Ding S, Wang Q, Wang Y Y, Yang C, Chen H Q, Li Y B, Li Y B, W ei L J, Zhang Z, Song J L, Yang H H, Duan J L, Gao K, Fang X and Tan J Y. 2014a. Discovery of the epithermal deposit of Cu (Au_Ag) in the Duolong ore concen trat ing area, Tibet[J]. Acta Geoscientica Sinica, 35(1): 6_10(in Chinese with Engl ish Abstract).
Tang J X, Wang L Q, Zheng W B and Zhong K H. 2014b. Ore deposits metallogenic re gularity and prospecting in the eastern section of the Gangdese metallogenic bel t[J]. Acta Geologica Sinica, 88(12): 2545_2555(in Chinese with English abstrac t).
Tang J X, Lang X H, Xie F W, Gao Y M, Li Z J, Huang Y, Ding F, Yang H H, Zhang L , Wang Q and Zhou Y . 2015. Geological characteristics and genesis of the Jurass ic No. I porphyry Cu_Au deposit in the Xiongcun district, Gangdese porphyry copp er belt, Tibet[J]. Ore Geology Reviews, 70: 438_456.
Tang J X, Ding S, Meng Z, Hu G Y, Xie F W, Li Z, Yuan M, Yang Z Y, Chen G R, Li Y H and Yang H Y. 2016. The first discovery of the low sulfidation epithermal de posit in Linzizong volcanics, Tibet: A case study of the Sinongduo Ag polymetall ic deposit[J]. Acta Geoscientica Sinica, 37(4): 461_470(in Chinese with En glish Abstract).
Taylor B E. 2007. Epithermal gold deposits[A]. In: Goodfellow W D, ed. Mineral de posits of Canada: A synthesis of major deposit_types, district metallogeny, the evolution of geological provinces, and exploration methods[M]. Geological Asso ciation of Canada, Mineral Deposits Division, Special Publication. 5: 113_139.
Ulrich S S, Hennie T and Thomas O. 2010. Volcanic_hosted massive sulfide deposit s in the Murchison greenstone belt, South Africa[J]. Mineralium Deposita, 45(2 ) :113_145.
Wang D H. 1996. The volcanic rock and mineralization in Ashele Cu mine, Xinjiang [J]. Scientia Geologica Sinica, 31(2): 163_169(in Chinese with English abstrac t).
Wang L Q, Tang J X, Deng J, Kang H R, Lin X, Cheng W B, Li Z and Zhang Z. 2015. The Longmala and Mengyaa skarn Pb_Zn deposits, Gangdese region, Tibet: evidence from U_Pb and Re_Os geochronology for formation during early India_Asia collisi on[J]. International Geology Review, 57(14): 1825_1842.
Wang Y C, Zhou Y, Liu Y H, Li R B, Wei F H, Gao J M, Liu C J and Wu S K. 2012. C haracteristics of Sinongduo Large_size overprinted and reworked Pb_Zn deposit in Xietongmen County of Tibet and the ore_searching directions[J]. Contributions t o Geology and Mineral Resources Research, 27(4): 440_449(in Chinese with English Abstract).
White N C and Hendenquist J W.1990. Epithermal environment and styles of mineral ization: Variations and their causes and guidelines for exploration[J]. Journa l of Geochemical Exploration, 36 (3): 445_474.
Winchester J A and Floyd P A. 1977. Geochemical discrimination of different magm a series and their differentiation products using immobile elements[J]. Chemic al Geology, 20(77): 325_343.
Yang C, Tang J X, Wang Y Y, Yang H H, Wang Q, Sun X G, Feng J, Yin X B, Ding S, Fang X, Zhang Z and Li Y B. 2014. Fluid and geological characteristics researche s of southern Tiegelong epithermal porphyry Cu_Au deposit in Tibet[j]. Min eral Deposits, 33(6): 1287_1305(in Chinese with English Abstract).
Zhang D Q, Feng C Y, Li D X, She H Q and Dong Y J. 2005. The evolution of ore_fo rming fluids in the porphyry_epithermal metallogenic system of zijinshan area[J ]. Acta Geoscientica Sinica, 26(2): 127_136(in Chinese with English Abstract).
Zheng S H, Zhang Z F, Ni B L, Hou F G and Shen M Z. 1982. Hydrogen and oxygen is otopic studies of thermal waters in Xizang[J]. Journey of Peking university, 1 : 99_106(in Chinese with English Abstract).
Zheng Y C, Fu Q, Hou Z Q, Yang Z S, Huang K X, Wu C D and Sun Q Z. 2015. Metallo geny of the northeastern Gangdese Pb_Zn_Ag_Fe_Mo_W polymetallic belt in the Lhas a terrane, southern Tibet[J]. Ore Geology Reviews, 70: 510_532.
Zhu D C, Pan G T, Mo X X, Liao Z L, Jiang X S, Wang L Q and Zhao Z D . 2005.Geoc hemistry and petrogenesis of the Sangxiu Formation basalts in the central segmen t of Tethyan Himalaya[J]. Geochimica, 34(1): 7_19(in Chinese with English abst ract).
附中文参考文献
董国臣, 莫宣学, 赵志丹, 王亮, 周肃. 2005. 拉萨北部林周盆地林子宗火山岩层 序新议[J]. 地质通报, 24(6): 549_557.
方向, 唐菊兴, 宋扬, 杨超, 丁帅, 王艺云, 王勤, 孙兴国, 李玉彬, 卫鲁杰, 张志, 杨欢 欢, 高轲, 唐攀. 2015. 西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其 地质意义[J]. 地球学报, 36(2): 168_176.
费光春, 温春齐, 周雄, 吴鹏宇, 温泉. 2009. 西藏洞中拉铅锌矿床石英激光探针 40Ar_39Ar定年及地质意义[J]. 矿物岩石, 30(3): 38_43.
付强, 黄克贤, 郑远川, 杨竹森, 段连峰. 2015. 西藏蒙亚啊铅锌矿床矽卡岩型矿体白云母 Ar_Ar年代学研究及其地球动力学意义[J]. 地质学报, 89(3): 569_582.
高一鸣 陈毓川, 唐菊兴. 2010. 西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石Ar_Ar定年及 其地质意义[J]. 矿床地质, 29(2): 323_331.
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. La_MC_ICP_MS锆石Hf同位素的 分析方法及地质应用[J]. 岩石学报, 23(10): 2595_2604.
侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光 明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山 带:Ⅰ. 主碰撞造山成矿作用[J]. 矿床地质, 25(4): 337_358.
纪现华, 杨竹森, 于玉帅, 申俊峰, 田世洪, 孟祥金, 李振清, 刘英超. 2012. 西藏纳如 松多铅锌矿床成矿岩体形成机制: 岩浆锆石证据[J].矿床地质, 31(4): 758_774.
纪现华, 孟祥金, 杨竹森, 张乾, 田世洪, 李振清, 刘英超, 于玉帅. 2014. 西藏纳如松多 隐爆角砾岩型铅锌矿床绢云母Ar_Ar定年及其地质意义[J]. 地质与勘探, 50(2): 281_290 .
郎兴海, 唐菊兴, 陈毓川, 李志军, 黄勇, 王成辉, 陈渊, 张丽, 周云. 2012. 西藏冈 底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区Ⅰ号矿体的Re_Os同位素年龄 证据[J]. 地球科学_中国地质大学学报,37(3): 515_525.
李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南 缘多龙矿集区荣那斑岩_高硫型浅成低温热液Cu_(Au)套合成矿:综合地质、热液蚀变及金属 矿物组合证据[J]. 岩石学报, 31(8): 2307_2324.
刘波, 董随亮, 李光明, 张晖. 2010. 西藏斯弄多铅锌矿岩体地球化学特征及年龄地质意义 [J]. 矿床地质, 29(增刊): 472_473.
刘云飞, 杨志明, 谢玉玲, 周平, 杜等虎, 李应栩, 李秋耘, 曲焕春, 许博. 2012. 西藏弄 如日金矿床侵入岩锆石SHRIMP U_Pb年龄与地球化学特征[J]. 矿床地质, 31(4): 727_744 .
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度_亚洲大 陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(3): 135_148.
莫宣学, 赵志丹, 喻学惠, 董国臣, 李佑国, 周肃, 廖忠礼, 朱弟成. 2009. 青藏高原新生 代碰撞_后碰撞火成岩[M]. 北京: 地质出版社. 1_396.
唐菊兴, 陈毓川, 王登红, 王成辉, 许远平, 屈文俊, 黄卫, 黄勇. 2009. 西藏工布江达 县沙让斑岩钼矿床辉钼矿铼_锇同位素年龄及其地质意义[J]. 地质学报, 83(5): 698_704 .
唐菊兴, 多吉, 刘鸿飞, 郎兴海, 张金树, 郑文宝, 应立娟. 2012.冈底斯成矿带东段矿床 成矿系列及找矿突破的关键问题研究[J]. 地球学报,33(4): 393_410.
唐菊兴, 孙兴国, 丁帅, 王勤, 王艺云, 杨超, 陈红旗, 李彦波, 李玉彬, 卫鲁杰, 张志, 宋俊龙, 杨欢欢, 段吉琳, 高轲, 方向, 谭江云. 2014a. 西藏多龙矿集区发现浅成低温热 液型铜(金银)矿床[J]. 地球学报, 35(1): 6_10.
唐菊兴, 王立强, 郑文宝, 钟康惠. 2014b.冈底斯成矿带东段矿床成矿规律及找矿预测[J ]. 地质学报, 88(12): 2545_2555.
唐菊兴, 丁帅, 孟展, 胡古月, 谢富伟, 李壮, 袁梅, 杨宗耀, 陈国荣, 李于海, 杨洪钰. 2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床[J]. 地球学报, 37( 4): 461_470.
王登红. 1996. 新疆阿舍勒铜矿区火山岩与成矿[J]. 地质科学, 31(2): 163_169.
王银川, 周勇, 刘玉红, 李瑞保, 魏方辉, 高景民, 刘成军, 吴树宽. 2012. 西藏谢通门 县斯弄多大型叠加改造型铅锌矿床特征及找矿方向[J]. 地质找矿论丛, 27(4): 440_449.
杨超, 唐菊兴, 王艺云, 杨欢欢, 王勤, 孙兴国, 冯军, 印贤波, 丁帅, 方向, 张 志, 李玉彬. 2014.西藏铁格隆南浅成低温热液型_斑岩型Cu_Au矿床流体及地质特征研究[ J]. 矿床地质, 33(6):1287_1305.
张德全, 丰成友, 李大新, 佘宏全, 董英君. 2005. 紫金山地区斑岩_浅成热液成矿系统的 成矿流体演化[J]. 地球学报, 26(2): 127_136.
郑淑蕙, 张知非, 倪葆龄, 侯发高, 沈敏子. 1982. 西藏地热水的氢氧稳定同位素研究[J ]. 北京大学学报(自然科学版), 1: 99_106.
朱弟成, 潘桂棠, 莫宣学, 廖忠礼, 江新胜, 王立全, 赵志丹. 2005. 特提斯喜马拉雅带中 段桑秀组玄武岩的地球化学和岩石成因[J]. 地球化学, 34(1): 7_19.