DOi:10.16111/j.0258_7106.2017.01.003
 新疆黑尖山Fe_Cu(_Au)矿床氢氧同位素特征及其地质意义
 赵联党1,2,陈华勇1**,张莉1,张增杰3,李登峰1,2,张维峰 1,2     陆万俭1,2,杨骏4,闫学录4

(1 中国科学院矿物学与成矿学重点实验室, 广东 广州510640; 2 中国科学院大学, 北京100049; 3 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点 开发实验室, 北京100037; 4 新疆地质矿产开发局第一地质大队, 新疆 昌吉8311 00)

第一作者简介赵联党, 男, 1989年生, 博士研究生, 矿物学、岩石学、矿床学专业。 Email: zhaold126@126.com
**通讯作者陈华勇, 男, 1976年生, 博士, 研究员, 主要从事造山带金属矿产成矿 模式研究及找矿勘探应用。 Email: huayongchen@gig.ac.cn

收稿日期2015_12_05
改回日期2016_12_30。 秦思婷编辑。

本文得到国家重点基础研究发展计划“973”项目(编号: 2014CB440802、2014CB448000) 、 中国科学院创新交叉团队合作项目(编号: Y433131A07)和新疆重大基础研究项目(编号 : 201330121)联合资助

摘要:黑尖山Fe_Cu(_Au)矿床位于新疆东天山阿齐山_雅满苏岛弧带。黑尖 山矿体赋存 于上石炭统马头滩组火山岩和火山碎屑岩中。根据脉体穿切关系和矿物共生组合类型,可 将 黑尖山的矿物生成顺序划分为7个阶段,分别为铬铁矿阶段(Ⅰ)、绿帘石蚀变阶段(Ⅱ) 、磁 铁矿阶段(Ⅲ)、黄铁矿阶段(Ⅳ)、铜(金)阶段(Ⅴ)、后期脉阶段(Ⅵ)和表生蚀变 阶段(Ⅶ)。阶段Ⅰ以在磁铁矿的核部出现铬铁矿为特征;阶段Ⅱ主要为绿帘石化;阶段 Ⅲ为Fe矿化,以磁铁矿与角闪石共生为主,伴有少量钾长石化;阶段Ⅳ以石英_黄铁矿_ 磁 黄铁矿±黄铜矿为共生矿物组合;阶段Ⅴ为Cu(_Au)矿化,以石英_黄铜矿_赤铁矿和黄铜 矿_ 银金矿_绿泥石脉为特征;阶段Ⅵ主要为后期的热液脉体;阶段Ⅶ主要出现一些铜的表生矿 物。磁铁矿阶段(Ⅲ)和铜(金)阶段(Ⅴ)分别为黑尖山的Fe和Cu(_Au)矿化阶段。H、 O同位素研究结果显示:黑尖山在Fe矿化之前,大量晚石炭世海水与黑尖山矿区围岩在基性 岩浆所产 生的区域热作用下发生反应,形成大面积的绿帘石蚀变(阶段Ⅱ: δ18Ofluid =6.3‰~7.8‰,δDfluid=-12.3‰~-7.3‰);Fe矿化主要受高温(约590℃ ) 的岩浆热液控制(阶段Ⅲ磁铁矿、石英和阳起石的δ18Ofluid分别为8.8‰, 9.5‰~9.7‰和8.9‰~9.3‰;阳起石的δDfluid=-102.5‰~-87.6‰),并 受其他因素(围岩及围岩中残留海水和有机质)的影响;外来的低温盆地卤水可能是形成硫 化物和Cu(_Au)矿化的主要控制因素;后期大气降水的加入与大量后期热液脉体的形成相 关(阶段Ⅵ: δ18Ofluid=1.4‰~3.5‰;δDfluid=-76.1‰~- 57.2‰)。黑尖山Fe_Cu(_Au)矿床在蚀变、矿化共生组合和成矿流体来源等方面与安第 斯中生代IOCG型矿床相似,且黑尖山矿床Fe和Cu(_Au)矿化阶段成矿流体的显著不同可能 是东天山阿齐山_雅满苏岛弧带其他Fe_Cu矿床的普遍特征,从而区别于典型矽卡岩型和海相 火山岩型矿床。
关键词: 地球化学;成矿期次;同位素地球化学;阿齐山弧带;IOCG 矿床;新疆_雅满苏岛
文章编号: 0258_7106 (2017) 01_0038_19 中图分类号: P618.31; P618.41; P618.52  文献标志码:A
H_O isotope characteristics and geological significance of Heijianshan Fe_Cu (_Au) deposit in Eastern Tianshan, Xinjiang 
ZHAO LianDang1,2, CHEN HuaYong1, ZHANG Li1, ZHANG ZengJie3, LI DengFeng1,2 ZHANG WeiFeng1,2, LU WanJian1,2, YANG JunTao4 and YAN XueLu4

(1 Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2 Graduate University of Chinese Aca demy of Sciences, Beijing 100049, China; 3 MRL Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resource, Chinese Academy of Geologi cal Sciences, Beijing 100037, China; 4 No. 1 Geological Party, Xinjiang Bureau of Geology and Mineral Exploration, Changji 831100, Xinjiang, China)

2015_12_05

Abstract:The Heijianshan Fe_Cu (_Au) deposit is located in the Aqishan_Yamansu island arc belt of the Eastern Tianshan, Xinjiang. The Heijianshan deposit is hos ted in volcanic rocks and volcaniclastic rocks of the Late Carboniferous Mat outa n Formation. Based on the cutting relationships of veins and mineral assemblages , the authors divided the paragenetic sequence of Heijianshan into seven stages: chromite stage (Ⅰ), epidote alteration stage (Ⅱ), magnetite stage (Ⅲ), p yrit e stage (Ⅳ), Cu (_Au) stage (Ⅴ), late veins (Ⅵ) and supergene alteration stag e (Ⅶ). Stage Ⅰ is characterized by the occurrence of chromite in the core of ma gnetite, while stage Ⅱ is mainly composed of epidote alteration. Fe mineralizat ion in stage Ⅲ occurs as magnetite coexisting with amphibole with minor K_feld spar alteration. Stage Ⅳ is characterized by mineral assemblage of quartz_pyrit e_pyrrhotite±chalcopyrite. Stage V is dominated by Cu (_Au) mineralization, whi ch is characterized by veins of quartz_chalcopyrite_hematite and chalcopyrite_el ectrum_chlorite. Stage Ⅵ is mainly composed of late hydrothermal veins, and sta ge Ⅶ occurs predominantly as supergene Cu minerals. The magnetite stage Ⅲ an d Cu (_Au) stage V are Fe and Cu (_Au) ore_forming stages at Heijianshan, respec tively. Hydrogen and oxygen isotopes show that large amounts of Late Carbonifero us seawater interacted with the host rocks in Heijianshan to form the epidote al teration (stage Ⅱ: δ18Ofluid=6.3‰~7.8‰, δDfluid=-12.3 ‰~-7.3‰) with the enhancement of regional heat by basic magma. Fe mineraliza tion was mainly controlled by the high temperature (~590℃) magmatic_hydrother mal fluids (stage Ⅲ δ18Ofluid values of magnetite, quartz and acti nolite are 8.8‰, 9.5‰~9.7‰ and 8.9‰~9.3‰, respectively; δDfluid values of actinolite are from -102.5‰ to -87.6‰) and influenced by other factors, such as host rocks, residual seawater and organic materials in host roc ks. Sulfides and Cu (_Au) mineralization might have predominantly been controlle d by the low temperature basinal brines. Afterwards, the meteoric water was mixe d with the ore_forming fluids to form abundant late hydrothermal veins (stage Ⅵ : δ18Ofluid=1.4‰~3.5‰; δDfluid=-76.1‰~-57.2‰). The Heijianshan Fe_Cu (_Au) deposit is similar to the Central Andean IOCG d eposits in alteration, mineralization paragenesis, and sources of ore_forming fl uids. Meanwhile, the remarkably different ore_forming fluids for Fe and Cu (_Au) mineralization in the Heijianshan Fe_Cu (_Au) deposit may be common characteris tics for the Fe_Cu deposits in the Aqishan_Yamansu island arc belt of the Easter n Tianshan, which is different from the typical skarn and submarine vo lcanic_hosted deposits in this region.
Key words: geochemistry, paragenesis, isotope geochemistry, Aqishan_Y amansu island arc belt, IOCG deposit,Xinjiang 
        作为中亚造山域的重要组成部分,东天山是中国铁矿重要的生产基地和勘查区(图1a、b; 程 松林等,2008;王京彬等,2006);自20世纪70年代以来,东天山的阿齐山_雅满苏岛弧带 (或弧后盆地)不断有新的矿床发现,如红云滩、百灵山、黑尖山、雅满苏、黑峰山、双峰 山、沙泉子等(图1c;Fang et al.,2006;Huang et al.,2013;Wang et al.,2005;方 维萱等,2006;姜福芝等,2002;王玉往等,2007;肖昱,2003;张遵忠等,2006)。近十 多年来,东天山Fe(_Cu)矿床的研究主要集中于岩石学(李文明等,2002;李源等,2 011 ;徐璐璐等,2014)、矿床地质特征(Han et al.,2003;Mao et al.,2005;Qin et al. ,2005;李厚民等,2014)和矿床地球化学(Huang et al.,2013;2014a;2014b)等方面 。Huang等(2013)通过对黑峰山、双峰山和沙泉子Fe(_Cu)矿床的黄铁矿Re_Os定年及其S _C_O同位素研究,认为这3个矿床具有IOCG型矿床特征;然而,黑尖山Fe_Cu(_Au)矿床 作为该成矿带典型的富铜矿化实例,其研究程度十分薄弱。在野外详细调研的基础上,笔者 对该矿床的地质特征、蚀变和矿化期次、流体包裹体和磁铁矿地球化学研究后发现,该矿床 与安第斯著名的Mina Justa(秘鲁)、Raúl_Condestable(秘鲁)、Mantoverde(智利) 、La Candelaria(智利)等IOCG矿床(详见Chen et al.,2011)具有许多相似的地质、地 球化学特征,并认为黑尖山Fe_Cu(_Au)矿床极可能是一个IOCG矿床。虽然学者们初步发 现 了黑尖山矿床的Fe矿化阶段和Cu(_Au)矿化阶段的成矿过程具有明显不同的特征(Zhao et al.,2014),但是这2种成矿阶段的流体来源和成矿机制尚不清楚。 因此,本文在详细的考察基础上,以H_O同位素来示踪成矿流体来源、成矿流体的演 化过程 ,详细讨论黑尖山Fe_Cu(_Au)矿床Fe矿化和Cu(_Au)矿化成矿机制的不同之处,并与全 球其他典型的IOCG矿床以及该区域出现的矽卡岩型、海相火山岩型等矿床进行综合对比。
1区域地质背景
        中亚造山带(CAOB;图1a)位于东欧克拉通和西伯利亚克拉通的南部,克拉库姆、塔里木和 华北克拉通的北部,主要由蛇绿岩、岩浆弧、前寒武基底和增生地体组成(Jahn et al.,2 000;2004;Sengr et al.,1993;Windley et al.,2007;Xiao et al.,2004a;2004b )。这些地质单元是在古亚洲洋闭合过程中,由洋壳俯冲、弧-陆碰撞以及陆-陆碰撞等一 系列 构造运动形成的(Charvet et al.,2007;Chen et al.,2012;Gao et al.,1998;Han e t al.,2009;Xiao et al.,2009;陈衍景等,2007;2009)。作为CAOB的一个重要组成部 分,东天山位于北疆地区,即位于塔里木盆地北部(图1b),自北向南被近EW向的深大断裂 划分为大南湖_头苏泉岛弧带、康古尔韧性剪切带、阿齐山_雅满苏岛弧带和中天山地块, 这些断裂自北向南依次为康古尔断裂、雅满苏断裂和阿其克库都克断裂(图1c)。
        大南湖_头苏泉岛弧带北部以大草滩断裂与哈尔里克岛弧带为界。大南湖_头苏泉岛弧带主要 由泥盆系—石炭系火山岩和一些侵入体组成(Mao et al.,2005),发育土屋、延东、灵 龙等一些斑岩型铜矿床(Shen et al.,2014;吴华等,2006)。康古尔韧性剪切带位于康 古尔断裂和雅满苏断裂之间,是区分准噶尔板块和塔里木板块的一条重要区域构造带(Mao et al.,2005)。该韧性剪切带主要由具有绿片岩相变质作用和韧性变形的石炭系火山岩( Xiao et al.,2004c)以及二叠系中_基性侵入体组成,并且分别在东、西部发育一些 铜镍硫 化物矿床(黄山、黄山东;Deng et al.,2014)和金矿床(石英滩、康古尔;Rui et al. ,2002;Zhang et al.,2002)。阿齐山_雅满苏岛弧带位于康古尔韧性剪切带的南部,两 者以雅满苏断裂为界(图1c)。该岛弧带主要由石炭系火山岩、火山碎屑岩、碎屑岩、沉 积岩夹层,以及覆盖石炭系之上的二叠系碎屑岩、火山岩和碳酸盐岩夹层组成(Mao et al. ,2005)。同时,该岛弧带发育一些侵入到石炭系的酸性侵入岩,而这些侵入岩的形成时代 主要集中于晚石炭世—早二叠世(李文明等,2002;周涛发等,2010)。大量的Fe(_Cu) 矿床发育于该岛弧带,如红云滩、百灵山、黑尖山、赤龙峰、雅满苏和沙泉子等,其中一些 矿 床富Cu(-Au)。中天山地块位于阿齐山_雅满苏岛弧带的南部,并以阿其克库都克断裂为 界 。中天山地块主要由片麻岩、石英片岩、混合岩、大理岩、钙碱性的玄武安山岩、 火山碎屑 岩、花岗闪长岩和少量的I型花岗岩组成(Liu et al.,2004;Mao et al.,2005),并发 育Pb_Zn(彩霞山、宏源)、Ag多金属(吉源)和Fe(阿拉塔格、天湖)矿床(图1c)。
2矿床地质特征
        黑尖山Fe_Cu(_Au)矿床位于新疆哈密市南约150 km处(图1c),其中,Fe和Cu的金属量分 别为12.06 Mt和0.38 Mt,平均品位分别为43.32%和0.78%(新疆维吾尔自治区地质调查 院, 2003),Au的品位未知。矿区出露上石炭统马头滩组,自下而上可分为大致相互平行的3个 岩性段。最底部的岩性段由沉凝灰岩、凝灰岩和玄武岩组成,出露于黑尖山矿区的北部和东 部;而矿区的西部和中部主要出露第二岩性段的凝灰岩、玄武岩和角砾凝灰岩;最上部的岩 性段为玄武安山玢岩,仅在矿区的中部和西部出露(图2)。赋矿围岩主要为马头滩组的第 二、三岩性段(图3、图4),矿体周边围岩普遍具有绿帘石化、角闪石化、绿泥石化和碳酸 盐化。
        黑尖山矿区主要发育3组断裂和1个小型向斜构造。最早期的断裂沿NW_NNW走向切穿马头滩组 第二岩性段的凝灰岩、玄武岩和角砾凝灰岩;较年轻的NNE_NE向断裂局部切穿石英闪长 岩 ;最晚的断裂切穿闪长玢岩、石英闪长岩、石英正长斑岩和二长花岗岩,走向近EW向到NE向 。
    图 1中亚造山带的构造格架简图(a) (据Sengr et al.,1996修改)、北疆构造格架示 意图(b) (据Chen et al.,2012修改)和东天山地质及矿产分布图(c)(据王京彬等,2 006;邓小华等,2014修改)
     1—中-新生代沉积物; 2—二叠纪火山岩、沉积岩; 3—石炭纪火山岩; 4—奥陶纪—泥 盆纪火山岩; 5—前寒武纪基底; 6—花岗岩; 
    7—断裂; 8—剪切带; 9—矿床(点)
     Fig. 1Simplified tectonic framework of the Central Asian Orogenic Belt (a) (m odified after Sengr et al.,1996),sketch map showing the tectonic framewor k of North Xinjiang (b) (modified after Chen et al.,2012) and geological ma p of the Eastern Tian_
    shan Orogenic Belt and distribution of deposits ( c) (modified after Wang et al.,2006; Deng et al.,2014)
     1—Meso_Cenozoic sediments; 2—Permian volcanic and sedimentary rocks; 3—Carb oniferous volcanic rocks; 4—Ordovician_Devonican volcanic
    rocks; 5—P recamb rian basement; 6—Granite; 7—Fault; 8—Shear zone; 9—Ore deposit
     矿区出露的侵入岩主要为一些中_酸性岩体(图2)。在矿区南部,主要出露石英正长斑岩、 石英闪长岩、闪长玢岩以及少量的二长花岗岩;矿区西北部主要为花岗闪长岩和闪长玢岩; 而辉绿玢岩以岩脉的形式在整个矿区均有出露。在矿区出露的这些岩体中,闪长玢岩和石英 闪长岩被石英正长斑岩、花岗闪长岩和二长花岗岩侵入。尽管目前没有准确的年龄 来限定这些侵入体的形成时间,但根据穿插关系判 断辉绿玢岩可能形成最晚
图 2黑尖山Fe_Cu(_Au)矿床地质图(据新疆维吾尔自治区地质调查院,2003修改) 
     1—玄武安山玢岩; 2—凝灰岩、玄武岩、角砾凝灰岩; 3—沉凝灰岩、凝灰岩、玄武岩; 4—石英正长斑岩; 5—二长花岗岩; 6—花岗闪长岩; 
    7—石英闪长岩; 8—闪 长玢岩 ; 9—辉绿玢岩; 10—断层; 11—矿体; 12—勘探线; 13—钻孔及编号
    Fig. 2Geological map of the Heijianshan Fe_Cu (_Au) deposit(modified after Xi njiang Uygur Autonomous 
    Region Geological Survey,2003)
     1—Basaltic andesitic porphyry; 2—Tuff,basalt and brecciated tuff; 3—Sedime ntary tuff,tuff and basalt; 4—Quartz syenite porphyry; 5—Monzonitic granite ; 6—Granodiorite; 7—Quartz diorite; 8—Diorite porphyry; 9—Diabase porphy ry; 10—Fault; 11—Orebody; 12—Exploration line; 
    13—Drill hole and its number     
        矿体以透镜状、层状赋存于上石炭系马头滩组的凝灰岩和角砾凝灰岩之中(图3、图4)。采 坑中出露最大的矿体长度为30~50 m,厚度为1~2 m,走向103°,倾向NW向,倾角45°。 根据 不同矿化类型,可将矿石分为氧化物矿石、硫化物矿石、氧化物_硫化物混合矿石,其中, 氧化物矿石和氧化物_硫化物混合矿石最为常见。磁铁矿在氧化物矿石中常以块状、角砾、 浸染状形式出现,偶见脉状磁铁矿产出的氧化物矿石。此外,黄铜矿(金)在硫化物矿石和 氧化物_硫化物混合矿石中常以浸染状和细脉状产出,偶见块状黄铜矿矿石。黑尖山Fe_Cu (_Au)矿床中出现的矿物多为自形、半自形,且常见交代结构,这些交代结构矿物的大量 出现,指示黑尖山矿床可能是一个热液矿床。矿石矿物主要为磁铁矿、赤铁矿、黄铁矿、黄 铜矿,以及少量的银金矿和磁黄铁矿。脉石矿物主要为绿帘石、方解石、角闪石、石英、绿 泥石和少量的钾长石、电气石、绢云母、榍石、钠长石、重晶石。
        详细的矿物共生组合鉴定和脉体穿切关系确定的基础上,黑尖山Fe_Cu(_Au)矿床的矿 物 生成顺序可划分为7个阶段(图5)。阶段I中的铬铁矿出现在阶段Ⅲ磁铁矿的核部,并被磁 铁矿交代或切穿,指示铬铁矿应该早于磁铁矿形成。阶段Ⅱ以出现大量的绿帘石化为特征, 且绿帘石以热液脉或者集束状产出,并被磁铁矿和角闪石所交代。此外,可见阶段Ⅱ的绿帘 石被阶段Ⅲ的阳起石_磁铁矿脉切穿(图6a)。阶段Ⅲ作为该矿床的Fe矿化阶段,可被分 为赤铁矿亚阶段和主磁铁矿化阶段,赤铁矿亚阶段是根据假象磁铁矿和石英共生现象推断得 出。主磁铁矿化阶段的主要矿物有磁铁矿、角闪石、石英和少量 的钾长石和黄铁矿,且常见磁铁矿与角闪石和石英
 图 3黑尖山Fe_Cu(_Au)矿区马头滩组柱状示意图
     1—凝灰岩; 2—角砾凝灰岩; 3—玄武安山玢岩; 4—矿体
     Fig. 3Schematic stratigraphic columns of the Matoutan Formation in the Heijian shan Fe-Cu (-Au) deposit area
     1—Tuff; 2—Brecciated tuff; 3— Basaltic andesitic porphyry; 4—Orebody   
共生(图6b)。阶段Ⅳ为黄铁矿阶段,以出现石英_黄铁矿_磁黄铁矿 ±黄铜矿共生的矿物组合为特征,且该阶段的黄铁矿常被阶段Ⅴ的黄铜矿脉和阶段Ⅵ的方解 石脉穿插。阶段Ⅴ为Cu(_Au)矿化阶段,其中可见阶段Ⅲ的磁铁矿被黄铜矿交代或包裹。 同时,可见该阶段的黄铜矿_银金矿_绿泥石脉和黄铜矿_石英_赤铁矿脉切穿块状黄铁矿 和磁 铁矿(图6c、d)。阶段Ⅵ以发育后期热液脉为特征,主要矿物有绿帘石、方解石、赤铁矿 、石英、绿泥石、钠长石、镜铁矿,偶见电气石和重晶石脉。阶段Ⅶ(非成 矿阶段)
   图 4黑尖山Fe_Cu(_Au)矿床2号勘探线地质剖面图
     1—凝灰岩; 2—角砾凝灰岩; 3—玄武安山玢岩; 4—矿体; 5—钻孔及编号
     Fig. 4Geological section along No. 2 exploration line of the Heijianshan Fe_Cu (-Au) deposit
     1—Tuff; 2—Brecciated tuff; 3—Basaltic andesitic porphyry; 4—Orebody; 5— Drill hole and its serial number 
主要由表生蚀变的矿物组成,如赤铁矿、孔雀石、氯铜矿、硅孔雀石、蓝辉铜矿、斑铜矿、 辉铜矿和褐铁矿等(图5)。
3样品描述和实验方法
        从绿帘石蚀变阶段(阶段Ⅱ)到后期脉阶段(阶段Ⅵ)中挑选的14件样品被用于H、O同位素 分析(表1)。在14件样品中,有3件样品代表绿帘石蚀变阶段(3个绿帘石)、8件样品代表 磁铁矿阶段(4个磁铁矿、2个石英、2个阳起石)、3件样品代表后期脉阶段(3个绿帘石) 。Cu_Au成矿阶段由于没有合适的单矿物样品未进行测试。
单矿物的分离工作是先将清洗后的岩石样品破碎,然后在双目镜下挑选,使其纯度达到99 %以上。矿物在分析之前均先在150℃条件下烘干。O同位素测试是在中国地质科学院矿产资 源研究所稳定同位素实验室的Finnigan MAT 253质谱仪上完成的。O同位素的分析根据Clayt on等(1963)的方法进行。硅酸盐矿物除绿帘石外,用BrF5在580℃条件下处理12 h,而 磁 铁矿和绿帘石用BrF5在620℃条件下处理48 h。测试结果采用V_SMOW表示,分析精度优于 ±0.2‰,不确定度为1σ。
        同位素测试是在核工业地质分析测试研究中心的Finnigan MAT 253型质谱仪上完成的。H同 位素的分析根据Vennemann等(1993)的方法进行。测试结果采用V_SMOW表示,分析精度优 于±2‰,不确定度为1σ。
图 5黑尖山Fe_Cu(_Au)矿床矿物生成顺序
     Fig. 5Paragenetic sequence of the Heijianshan Fe_Cu (_Au) deposit    
图 6黑尖山Fe_Cu(_Au)矿床中代表性的矿物共生组合a. 阶段Ⅱ中广泛发育的绿帘石被阶段Ⅲ的阳起石_磁铁矿脉切穿; b. 在阶段Ⅲ,磁铁矿 与石英和角闪石共生; c. 阶段Ⅳ的黄铁矿被阶段Ⅴ的
    黄铜矿_银金矿脉切穿; d. 阶段V的石英_黄铜矿_赤铁矿脉切穿阶段Ⅲ的块状磁铁矿
    Act—阳起石; Am—角闪石; Ccp—黄铜矿; Elc—银金矿; Ep—绿帘石; Hem—赤铁矿 ; Mag—磁铁矿; Py—黄铁矿; Qtz—石英
    Fig. 6 Representative mineral assemblages for the Heijianshan Fe_Cu (_Au) deposi t
     a. Widely developed stage Ⅱ epidote cut by actinolite and magnetite veins of st age Ⅲ; b. In stage Ⅲ,magnetite intergrowth with quartz and amphibole; c. St age Ⅳ pyrite cut by a vein of chalcopyrite and electrum in stage Ⅴ; d. A vein of quartz_chalcopyrite_hematite in stage Ⅴ cutting the stage 
    Ⅲ massive magnetite
    Act—Actinolite; Am—Amphibole; Ccp—Chalcopyrite; Elc—Electrum; Ep—Epidot e; Hem—Hematite; Mag—Magnetite; 
    Py—Pyrite; Qtz—Quartz    
   表 1黑尖山各阶段矿物及流体的δ18O和δD值
     Table 1δ18O and δD values of minerals and fluids from various stages a t Heijianshan       
4同位素地球化学
4.1氧同位素
        在绿帘石蚀变阶段(阶段Ⅱ),绿帘石的δ18OV_SMOW值在6.2‰~7.7 ‰之 间(平均值6.9‰)。在磁铁矿阶段(阶段Ⅲ),共生的磁铁矿、石英、阳起石的δ18 OV_SMOW值分别为0.2‰~2.3‰(平均值0.9‰)、11.7‰~11.9‰(平均值1 1.8‰)和7.0‰~7.4‰(平均值7.2‰)。磁铁矿变化范围较大的δ18OV_S MOW值可分为2组,即表面有氧化的磁铁矿δ18OV_SMOW值为0.2‰~0.8‰ ;而纯净磁铁矿的δ18OV_SMOW值为2.3‰。因此,笔者认为,Fe矿化阶 段 磁铁矿的δ18OV_SMOW值应为2.3‰。在后期脉阶段(阶段Ⅵ),绿帘石的δ 18OV_SMOW值在7.2‰~9.3‰之间,平均值为8.0‰(表1)。
        在磁铁矿阶段,可以根据共生矿物的阳起石_磁铁矿的氧同位素对(1000 lnα阳起石_ 水=3.96×106/t2-8.25×103/t+2.37,1000 lnα磁铁矿_水=3.0 2×106/t2-12×103/t+3.31;Zheng,1991;1993b;Zheng et al.,1991)来计 算磁铁矿阶段成矿流体温度。在选择矿物共 生对进行计算前,笔者先在镜下对矿物进行岩相学观察以确定两者为共生矿物。磁铁矿阶段 的阳起石_磁铁矿的氧同位素对计算出的温度约为590℃,笔者认为该温度代表了形成磁铁矿 时成矿流体的温度。流体包裹体测温结果(未发表)显示,代表各阶段的成矿流体温度分别 为370℃(阶段Ⅱ)、170℃(阶段Ⅳ)和160℃(阶段Ⅵ)。
        在绿帘石蚀变阶段,计算出的绿帘石的δ18Ofluid值(t=370℃;100 0 ln α绿帘石_水=4.05×106/t2-7.81×103/t+2.29;Zheng,1993b) 在6.3‰~7.8‰之间,平均值7.0‰。在磁铁矿阶段,计算出的磁铁矿(t=590℃;1 000 lnα 磁铁矿_水=3.02×106/t2-12×103/t+3.31;Zheng,1991;Zheng e t al.,1991)、石英(t=590℃;1000 lnα石英_水=4.48×106/t2-4 .77×103/t+1.71;Zheng,1993a)、阳起石(t=590℃;1000 lnα阳起 石_水=3.96×106/t2-8.25×103/t+2.37;Zheng,1993b)计算出 的δ18Ofluid值分别为8.8‰、9.5‰~9.7‰和8.9‰~9.3‰。在后期脉 阶段,绿帘石的δ18Ofluid值(t=160 ℃ ;1000 lnα绿帘石_水=4.05×106/t2-7.81×103/t+2.29;Zheng ,1993b)在1.4‰~3.5‰之间,平均值2.2‰(表1)。
4.2氢同位素
        黑尖山Fe_Cu(_Au)矿床各阶段不同矿物的δDV_SMOW值已列于表1中。在绿帘石蚀变 阶段(阶段Ⅱ),被角闪石和磁铁矿交代或切穿的绿帘石的δDV_SMOW值为-51.7‰ ~-46.7‰,平均值-49.8‰;在磁铁矿阶段(阶段Ⅲ),与磁铁矿共生的阳起石的δ D V_SMOW值为-126.7‰和-111.8‰;后期脉阶段(阶段Ⅵ)绿帘 石的δDV_SMOW值为-59.3‰~-40.4‰,平均值-49.1‰。
        成矿流体不同阶段δDH2O值可根据各阶段代表性矿物的平衡方程进行计算,如绿帘 石(阶段Ⅱ: t=370℃;1000 lnα绿帘石_水=9.3×106/t2-61. 9;C hacko et al.,1999;阶段Ⅵ: t=160℃;1000 lnα绿帘石_水=29.2×10 6/ t2-138.8;Graham et al.,1980)和阳起石(阶段Ⅲ: t=590℃;1000 lnα 角闪石_水=-23.9×106/t2+7.9;Suzuoki et al.,1976)。计算出的δD H2O值在绿帘石蚀变阶段为-12.3‰~-7.3‰(平均值-10.4‰),在磁铁矿 阶段为-102.5‰和-87.6‰,而后期脉阶段为-76.1‰~-57.2 ‰(平均 值-65.9‰,详见表1)。
5讨论
5.1成矿流体来源与演化过程
        黑尖山Fe_Cu(_Au)矿床的热液蚀变期次较多,较为复杂,且Fe矿化与Cu(_Au)矿化阶段 分离,成矿流体也可能显示出不同特征。结合矿床地质特征和H_O同位素数据,笔者对各阶 段的成矿流体来源和演化过程有如下认识:  
5.1.1成矿流体来源
        在阶段Ⅰ,铬铁矿被磁铁矿交代或切穿,根据铬铁矿的普遍成因,笔者认为铬铁矿的形成可 能与高温的基性岩浆有关(Thayer,1960;1964;Zhou et al.,1992;田亚洲,2015)。
        在阶段Ⅱ,由绿帘石计算得出的δ18Ofluid值为6.3‰~7.8‰,平均值7.0 ‰,这与四川拉拉铜矿床磁铁矿_多金属硫化物阶段、Olympic Dam的磁铁矿阶段和赤铁矿_ 石英阶段范围相似(图7)。在绿帘石蚀变阶段,绿帘石的δDfluid值为-12.3‰~- 7.3‰(平均值-10.4‰),在δDH2O_δ18OH2O图(图8)中,位 于岩浆水和变质水的上部,代表热液流体在形成大面积绿帘石蚀变时可能并非岩浆成因或变 质成因。笔者认为在阶段Ⅱ,热液流体可能为晚石炭纪海水与围岩发生了交代作用的产物, 该过程可以使得流体δ18Ofluid值显著升高,但δDfluid值几乎未发生 变化(Battles et al.,1995)。
        在阶段Ⅲ,计算得出的磁铁矿(8.8‰)、石英(9.5‰和9.7‰)和阳起 石的 δ18Ofluid值(8.9‰~9.3‰,平均值9.1‰)与秘鲁Mina Justa铜矿(IO CG型)的磁铁矿_ 黄铁矿阶段相似,位于岩浆成因的范围(图7)。该阶段的岩浆热液流体具有相对较低的δD H2O值且位于岩浆水的下部(图8),明显不同于单一的岩浆成因。笔者推测可能是 围岩中残 留的海水与围岩作用后参与到岩浆热液流体中,并受到有机质还原作用影响(石英包裹体的 拉曼显示该阶段流体中含有少量的SO2,未发表),使得在阶段Ⅲ的δDH2O和δ 18Ofluid值相对于单一的岩浆热液流体分别有一定的降低和升高。因此,笔者 认为该阶段的流体主要为 岩浆热液成因,并受到围岩及围岩中残留海水和有机质的影响。
        在阶段Ⅳ和Ⅴ,热液流体以中_低温的盆地卤水为主(<300℃,未发表流体包裹体数据), 形 成黄铁矿化和Cu(_Au)矿化。在阶段Ⅵ,绿帘石的δ18Ofluid值为1.4‰~3 .5‰(平均值为 2.2‰),与拉拉铜矿(IOCG型)的后期无矿脉阶段相似(图7)。同时,如图8所示,该阶 段流体被投在了岩浆水向大气降水演化的趋势线上,且向大气水方向靠近,说明该阶段的流 体以大气降水为主。     
5.1.2成矿流体演化过程
        在黑尖山,铬铁矿从早期基性岩浆流体结晶形成(阶段Ⅰ)。伴随基性岩浆所产生的区域热 作用,大量晚石炭世海水与黑尖山矿区围岩发生反应并形 成了大面积的绿帘石蚀变(阶段Ⅱ)。之后,高温富 Fe的岩浆热液流体形成了赤铁矿(阶段Ⅲ_A),随着环境变化(可能为f(O2) 突然降低)大量的角闪石_磁铁矿形成(在约590℃的条件下),并伴有角闪石化和围岩中残留海水可能与围岩发生反应并加入到成 矿 热液中,而围岩中有机物也可能参与了反应过程,
  图 7黑尖山矿床和世界上的其他IOCG矿床各阶段计算得出的δ18Ofluidt关系图
     其他IOCG矿床的数据来自Benavides et al.,2007;Chen et al.,2011;Chen et al.,20 12;Williams et al.,2005;岩浆水的范围据Taylor,1997
     Fig. 7δ18Ofluid_t relationships of the calculated fluid s from various stages in the Heijianshan 
    deposit and other IOCG deposits in th e world
     Data for other IOCG deposits are from Benavides et al.,2007;Chen et al.,2011 ;Chen et al.,2012;Williams et al.,2005
     and references therein;Magmatic wa ter is from Taylor,1997  
     图 8黑尖山矿床各蚀变矿化阶段计算得出的流体
    δD_δ18O图
     岩浆水和变质水的范围分别据Taylor,1997;Sheppard,1986;晚石炭世的可能海水值据Ve izer et al.,1999;Fe矿化阶段分别据迤纳厂(侯林等,2013)、雅满苏(卢登蓉等,199 5)和红云滩(张增杰等,
    2012)
    Fig. 8Calculated δD-δ18O values of fluids responsible 
    for som e alteration and mineralization stages in the Hei_
    jianshan deposit
     Fields for magmatic and metamorphic water are from Taylor,1997 and Sheppard,19 86,respectively;possible Lower Carboniferous seawater composition is from Veiz er et al.,1999;Fe mineralization stages
    are from Yinachang(Hou et al. ,2013),Yamansu(Lu et al.,1995)
    and Hongyuntan(Zhang et al.,2012) 
从而影响了成矿流体的同位素特征。值得 说明的是,此时围岩中残留海水相对于绿帘石阶段大量海水的循环涌入是较少的,因此,围 岩 中有机质反应对流体同位素体系的影响可能较大。此时流体以高温(约590℃)、中_高盐度 w(NaCleq)可达56.0%)、富Fe和Na_K为特征,而硫化物和Cu(_Au)矿 化阶 段则以低温、中_高盐度、富Ca_Mg的盆地卤水为主(未发表流体包裹体数据)。随着流体不 断演化,成矿物质含量减少,并受到大气降水的影响,形成低温、低盐度的热液脉体。
        类似黑尖山这种成矿流体来自岩浆热液和外部流体2种不同体系、并且成矿流体演化呈现明 显阶段性的现象同样也出现在一些典型的IOCG矿床中,特别是安第斯中生代IOCG矿床,如 秘鲁的Raúl_Condestable矿床和Mina Justa矿床、智利的Mantoverde 矿床和La Candelaria矿床(Chen et al.,2011)。 
  5.2与全球其他IOCG矿床的比较以及对本区成矿作用的启示
        黑尖山Fe_Cu(_Au)矿床在Fe矿化之前的蚀变阶段形成大量的绿帘石,以及与其共生的方解 石、电气石,可能代表Ca_Mg蚀变,而IOCG矿床以矿化前大面积的Na_Ca蚀变为特征,如中 国拉拉矿床(Na蚀变;Chen et al.,2012)和迤纳厂矿床(Na蚀变;Li et al.,2015) 、秘鲁Mina Justa矿床(Na_K_Fe_Ca蚀变;Chen et al.,2010a;2010b;2011)和Raúl _Condestable矿床(K_Ca蚀变;De Haller et al.,2009)、巴西Sossego矿床(Na_Ca蚀 变;Monteiro et al.,2008)、智利La Candelaria矿床(Na_K蚀变;Marschik et al. ,2001)、澳大利亚Olympic Dam矿床(Na_Ca_Fe蚀变;Bastrakov et al.,2007)和Ern est Henry矿床(Na_Ca蚀变;Mark et al.,2006);黑尖山Ca_Mg蚀变机制和过程可能与之 类似,但热液和围岩成分等因素则影响了蚀变矿物组合的差异。黑尖山Fe_Cu(_Au)矿床与 Fe矿化相关的蚀变主要为角闪石化和弱钾化,且角闪石与磁铁矿密切共生,并见磁铁矿与角 闪石交代或切穿绿帘石(图6a)。这明显不同于阿齐山_雅满苏岛弧带具有矽卡岩化的其他F e(_Cu)矿床(红云滩、百灵山、雅满苏、沙泉子)。典型的矽卡岩Fe(_Cu)矿床以明显 矽 卡岩化(石榴子石化、辉石化)为特征(Meinert,1992;Meinert et al.,2005),且Fe 矿化与绿帘石密切共生(中国鄂东地区的金山店矽卡岩型Fe矿:Zhu et al.,2015)。黑尖 山矿床并未出现明显的干矽卡岩阶段矿物,如石榴子石和辉石等,而且在矿化顺序上,黑尖 山的黄铁矿阶段和Cu(_Au)矿化阶段明显晚于Fe矿化,且Fe矿化在主磁铁矿化前可见赤铁 矿化现象,而Cu(_Au)矿化发育绿泥石化,以石英_黄铜矿_赤铁矿脉和黄铜矿_银金矿_绿 泥石脉为特征,这种矿化现象与秘鲁Mina Justa矿床(Chen et al.,2011)极为相似( 表2),但与典型矽卡岩矿床存在明显差异。
        黑尖山在绿帘石蚀变阶段(阶段Ⅱ)的H_O同位素特征明显不同于阿齐山_雅满苏Fe_Cu成矿 带中具有矽卡岩化的Fe矿床在矽卡岩阶段的高温岩浆热液特点, 而与IOCG矿床在矿化前由 海 水与围岩反应形成的Na_Ca蚀变相似(详见Barton et al., 1996;表2)。在Fe矿化阶段( 阶段Ⅲ), 图7显示黑尖山的成矿流体为岩浆成因, 而图8的H_O同位素显示该阶段的成矿 流 体虽然以岩浆热液为主, 但明显受到其他因素(围岩与围岩中残留海水和有机质)的影响 。 同时, 黑尖山Fe矿化阶段的成矿流体主要为岩浆热液的特征, 不仅在其他IOCG矿床中有所 报道(如秘鲁Mina Justa矿床:Chen et al., 2011;中国拉拉矿床:Chen et al., 2012 ;中国迤纳厂矿床:侯林等, 2013;巴西Sossego矿床:Monteiro et al., 2008;智利 Mantoverde矿床:Benavides et al., 2007), 而且在阿齐山_雅满苏Fe_Cu成矿带的雅满 苏铁矿床(卢登蓉等, 1995)和红云滩铁矿床(张增杰等, 2012)中也有报道。黑尖山Cu (_Au )矿化阶段为低温盆地卤水的特征与秘鲁Mina Justa矿床(Chen et al., 2011)和Raúl _Condestable矿床(Ripley et al., 1977)、智利Mantoverde矿床(Vila, 1996)和La Candelaria矿床(Ullrich et al., 1999)等IOCG矿床相似(表2), 指示黑尖山可能为I O CG矿床。在后期脉阶段, 黑尖山的成矿流体以大气降水为主, 而以大气降水为主的热液流 体在许多IOCG型矿床的后期无矿脉阶段极为常见, 如Mina Justa(Chen et al., 2011) 、拉拉(Chen et al., 2012)、迤纳厂(侯林等, 2013)等矿床。
        黑尖山作为阿齐山_雅满苏Fe_Cu成矿带富铜的Fe矿实例,矿体主要以层状、似层状赋存于火 山岩和火山碎屑岩中,与SEDEX和海相火山岩型矿床相似。但是,黑尖山Fe矿化阶段的温度 约590℃,明显区别于SEDEX型矿床较低的矿化温度(常为50~140℃,最大350~400℃;Fra n klin et al.,2005)。海相火山岩型Fe矿则常与海相火山_沉积岩相关,且矿化相关的火山 岩以中_基性常见(Zhang et al.,2014),具有如下特征(详见Hou et al.,2014a;Zhan g et al.,2014):① 赋矿地层为与海底岩浆作用相关的熔岩、火山碎屑岩_沉积岩;② 矿体呈层状、似层状、透镜状、脉状;③ 与赤铁矿相关的蚀变不常见,以低温蚀变(绿泥 石化、绢云母化、硅化和碳酸盐化)为主,而与磁铁矿相关的蚀变广泛发育,以矽卡岩化( 石榴子石化、透辉石化、绿泥石化、绿帘石化和阳起石化)、碳酸盐化、硅化、钾长石化和 钠化为主,且矽卡岩化附近无岩体出现;④ 矿化与海底岩浆作用和海水有关,从火山口向 外,铁矿化成因出现岩浆成因、热液成因到沉积成因的变化;⑤ 成矿时代为古元古代到中 生代。值得提出的是,海相火山岩型矿床是目前国内常用的分类,但在国外并未单独划分该 矿床类型,且具有矽卡岩化的海相火山岩型矿床与矽卡岩矿床之间争议很大,如Mao等(200 5)认为 雅满苏Fe(_Cu)矿为矽卡岩型矿床,存在隐伏岩体,而部分学者(Hou et al.,20 14a;2014b;Zhang et al.,2014)认为其为海相火山岩型矿床。
        尽管IOCG型矿床的矿体也常以层状、似层状 赋存于火山岩、火山碎屑岩中,与海相火山岩型矿床 有一定相似性,但是IOCG型矿床具有其他不同的典型特征(Chen,2013;Chen et al. ,2011;Williams et al.,2005):① 矿化前大面积的Na_Ca蚀变;② Fe矿化早于Cu(_A u)矿化;③ Fe矿化可分为赤铁矿亚阶段和主磁铁矿化阶段,且常出现磁铁矿_角闪石_黑云 母_钾长石的矿物共生组合;④ Cu(_Au)阶段出现黄铜矿±金_赤铁矿_方解石_绿泥石的矿 物共生组合;⑤ Fe阶段为高温、中_高盐度的岩浆热液流体;⑥ Cu(_Au)阶段为低温 、中 _高温的盆地卤水或海水。可以看出,IOCG型矿床与海相火山岩型矿床的比较显著的区别为 :① 除富含大量的磁铁矿或赤铁矿外,IOCG型矿床常伴有工业品位的Cu、Au、Ag和REE 矿化;② IOCG型矿床的Fe矿化为岩浆或岩浆热液成因,常与侵入体相关,为后生矿床,不 同于海相火山岩型的同生特征(可能受到后期海水影响出现热液成因);③ IOCG型的Cu(_ Au)矿化多为非岩浆成因的海水或盆地卤水,而海相火山岩型矿床常无或含有极少的后期的 Cu矿化。
        综上所述,黑尖山在蚀变与矿化共生组合、成矿流体特征和来源等方面皆与安第斯中生代IO CG矿床相似,而与典型矽卡岩型、海相火山岩型和SEDEX型矿床存在较大差异,表明以黑尖 山Fe_Cu(_Au)矿床为代表的阿齐山_雅满苏Fe_Cu成矿带可能具有安第斯型IOCG矿床的成矿 潜力。
6结论
        (1) 黑尖山Fe_Cu(_Au)矿床的H、O同位素特征指示黑尖山矿床的成矿流体演化特征为: 大量晚石炭世海水与黑尖山矿区围岩在基性岩浆所产生的区域热作用下发生反应形成了大面 积的绿帘石蚀变;Fe矿化主要由高温岩浆热液形成,并受到围岩及围岩中残留海水和有机质 的影响,而之后外来的低温盆地卤水可能是形成硫化物和Cu(_Au)矿化的主要控制因素; 后期随着大气降水的参与形成大量的后期热液脉体。
        (2) Fe矿化阶段的O同位素温度计表明该阶段的成矿流体温度为590℃,代表了磁铁矿形 成的温度。
        (3) 黑尖山Fe_Cu(_Au)矿床在蚀变与矿化共生组合、成矿流体特征和来源等方面皆与安 第斯中生代IOCG矿床相似,表明以黑尖山Fe_Cu(_Au)矿床为代表的阿齐山_雅满苏Fe_Cu成 矿带可能具有安第斯型IO CG矿床的成矿潜力。
    
        志谢野外地质工作期间,得到新疆第一地质大队野外工作人员的大力支持和帮 助。中国 科学院广州地球化学研究所王成明博士在文章撰写中的交流、讨论,以及审稿专家对本文提 出许多建设性的意见,在此一并感谢!



参考文献
 References  
     Barton M D and Johnson D A. 1996. Evaporitic_source model for igneous_re lated Fe oxide_(REE_Cu_Au_U) mineraliza_tion[J]. Geology, 24(3): 259_262. 
     Bastrakov E N, Skirrow R G and Davidson G J. 2007. Fluid evolution and origins o f iron oxide Cu_Au prospects in the Olympic Dam district, Gawler Craton, South A ustralia[J]. Econ. Geol., 102(8): 1415_1440.
     Battles D A and Barton M D. 1995. Arc_related sodic hydrothermal alteration in the western United States[J]. Geology, 23(10): 913_916.
     Benavides J, Kyser T, Clark A H, Oates C J, Zamora R, Tarnovschi R and Castillo B. 2007. The Mantoverde iron oxide_copper_gold district, Ⅲ Región, Chile: The role of regionally derived, nonmagmatic fluids in chalcopyrite mineraliza tion[J]. Econ. Geol., 102(3): 415_440.
     Chacko T, Riciputi L R, Cole D R and Horita J. 1999. A new technique for determi ning equilibrium hydrogen isotope fractionation factors using the ion microprobe : Application to the epidote_water system[J]. Geochimica et Cosmochimica Acta, 63(1): 1_10.
     Charvet J, Shu L S and Charvet S L. 2007. Palezoic structural and geodynamic evo lution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates[ J]. Episodes, 30(3): 162_186.
     Chen H Y, Clark A H and Kyser T K. 2010a. The Marcona magnetite deposit, ica, so uth_central Peru: A product of hydrous, iron oxide_rich melts [J]? Econ. Geol. , 105(8): 1441_1456.
     Chen H Y, Clark A H, Kyser T K, Ullrich T D, Baxter R, Chen Y M and Moody T C. 2 010b. Evolution of the giant Marcona_Mina Justa iron oxide_copper_gold district, south_central Peru[J]. Econ. Geol., 105(1): 155_185.
     Chen H Y, Kyser T K and Clark A H. 2011. Contrasting fluids and reservoirs in th e contiguous Marcona and Mina Justa iron oxide_Cu (_Ag_Au) deposits, south_c entral Perú[J]. Mineralium Deposita, 46(7): 677_706.
     Chen W T and Zhou M F. 2012. Paragenesis, stable isotopes, and molybdenite Re_Os isotope age of the Lala iron_copper deposit, Southwest China[J]. Econ. Geol., 107(3): 459_480.
     Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C and Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrol ogica Sinica, 23(9): 2085_2108 (in Chinese with English abstract).
     Chen Y J, Zhai M G and Jiang S Y. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China conti nent [J]. Acta Petrologica Sinica, 25(11): 2695_2726 (in Chinese with English abstr act).
     Chen Y J, Pirajno F, Wu G, Qi J P and Xiong X L. 2012. Epithermal deposits i n no rth Xinjiang, NW China[J]. International Journal of Earth Sciences, 101(4): 88 9_917.
     Chen H Y. 2013. External sulphur in IOCG mineralization: Implications on definit ion and classification of the IOCG clan[J]. Ore Geology Reviews, 51: 74_78 .
     Cheng S L, Wang X K, Wu H, Mao Q G, Ao S J and Han C M. 2008. Late paleozoic end ogenic metallogenic series in the North Moutains, Xinjiang, NW China[J]. Xinji ang Geology, 26(1): 43_48 (in Chinese with English abstract).
     Clayton R N and Mayeda T K. 1963. The use of bromine pentafluoride in the extrac tion of oxygen from oxides and silicates for isotopic analysis[J]. Geo chimica Cosmochimica Acta, 27(1): 43_52.
     De Haller A, Corfu F, Fontboté L, Schaltegger U, Barra F, Chiaradia M, Frank M and Alvarado J Z. 2006. Geology, geochronology, and Hf and Pb isotope data of th e Raúl_Condestable iron oxide_copper_gold deposit, central coast of Peru[J]. Econ. Geol., 101(2): 281_310.
     De Haller A and Fontboté L. 2009. The Raúl_Condestable iron Oxide copper_gold deposit, Central Coast of Peru: Ore and related hydrothermal alteration, sulfur Isotopes, and thermodynamic constraints[J]. Econ. Geol., 104(3): 365_384.
     Deng X H, Wang J B, Wang Y W, Li Y C, Fang T H and Mao Q G. 2014. Geological cha racteristics of the Hongshi Cu_Au deposit, eastern Tianshan, Xinjiang and di scus sion of the deposit genesis[J]. Mineral Exploration, 5(2): 159_168 (in Chinese with English abstract).
     Deng Y F, Song X Y, Chen L M, Zhou T, Pirajno F, Yuan F, Xie W and Zhang D Y. 20 14. Geochemistry of the Huangshandong Ni_Cu deposit in northwestern China: I mpli cations for the formation of magmatic sulfide mineralization in orogenic belts[ J]. Ore Geology Reviews, 56: 181_198.
     Fang W X, Gao Z Q, Jia R X, Liu Z T, Li F S and Xu G D. 2006. Geological explora tion potentials and geochemical study on rocks and ores in Shaquanzi copper and copper_iron deposits, East Xinjiang[J]. Acta Petrologica Sinica, 22(5): 1413_1 424 (in Chinese with English abstract).
     Fang W X, Huang Z Y, Tang H F and Gao Z Q. 2006. Lithofacies, geological and geo chemical characteristics and tectonic setting of Late Carboniferous volcanic _sed imentary rocks in the Kumtag_Shaquanzi area, East Tianshan[J]. Geology in Chin a, 33: 529_544.
     Franklin J M, Gibson H L, Jonasson I R and Galley A G. 2005. Volcanogenic massiv e sulfide deposits[J]. Economic Geology 100th Anniversary Volume, 98: 523_560. 
     Gao J, Li M S, Xiao X C,Tang Y Q and He G Q. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics, 287(1): 213 _231.
     Graham C M, Sheppard S M F and Heaton T H E. 1980. Experimental hydrogen isotope studies: I. Systematics of hydrogen isotope fractionation in the systems epidot e_H2O, zoisite_H2O and AlO(OH)_H2O[J]. Geochimica et Cosmochimica Acta, 44(2): 353_364.
     Han B F, Guo Z J, Zhang Z C, Zhang L, Chen J F and Song B. 2009. Age, geochemist ry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bul letin, 122(3_4): 627_640.
     Han C M and Zhao G C. 2003. Major types and characteristics of Late Paleozoic or e deposits, East Tianshan, northwest China[J]. International Geology Reviews, 45(9): 798_813.
     Hou L, Ding J, Wang C M, Liao Z W, Wang S W and Wang Z. 2013. Ore_forming fluid and metallogenesis of the Yinachang Fe_Cu_Au_REE deposit, Wuding, Yunan Province , China[J]. Acta Petrologica Sinica, 29(4): 1187_1202 (in Chinese with English abstract).
     Hou T, Zhang Z C, Pirajno F, Santosh M, Encarnacion J, Liu J L, Zhao Z D and Zha ng L J. 2014a. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview[J]. Ore Geology Reviews, 57: 4 98_517.
     Hou T, Zhang Z C, Santosh M, Encarnacion J, Zhu J and Luo W J. 2014b. Geochronol ogy and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Ea stern Tianshan Mountains, NW China: Constraints on the metallogenesis[J]. Ore Geology Reviews, 56: 487_502.
     Huang X W, Qi L, Gao J F and Zhou M F. 2013. First reliable Re_Os ages of pyrite and stable isotope compositions of Fe (_Cu) deposits in the Hami Region, easter n Tianshan Orogenic Belt, NW China[J]. Resource Geology, 63(2): 166_187.
     Huang X W, Qi L, Wang Y C and Liu Y Y. 2014a. Re_Os dating of magnetite from the Shaquanzi Fe_Cu deposit, Eastern Tianshan, NW China[J]. Science China Ear th Sciences, 57(2): 267_277.
     Huang X W, Qi L and Meng Y M. 2014b. Trace element geochemistry of magnetite fro m the Fe (_Cu) deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica (English Edition), 88(1): 176_195.
     Jahn B M, Wu F Y and Chen B. 2000. Massive granitoid generation in Central A sia: Nd isotope evidence and implication for continental growth in the Phanerozoic[ J]. Episodes, 23(2): 82_92.
     Jahn B M, Windley B, Natalin B and Dobretsov N. 2004. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 23(5): 599_603.
     Jiang F Z, Qin K Z, Fang T H and Wang S L. 2002. Types, geological characteristi cs, metallogenic regularity and exploration target of iron deposits in Eastern T ianshan Moun_tains[J]. Xinjiang Geology, 20(4): 379_383 (in Chinese with E nglish abstract).
     Li H M, Ding J H, Li L X and Yao T. 2014. The genesis of the skarn and the genet ic type of the Yamansu iron deposit, Eastern Tianshan, Xinjiang[J]. Acta Geolo gica Sinica, 88(12): 2477_2489 (in Chinese with English abstract).
     Li W M, Ren B Z, Yang X K, Li Y Z and Chen Q. 2002. The intermediate_acid intrus ive magmatism and its geodynamic significance in Eastern Tianshan region[J]. N orthwestern Geology, 35(4): 41_64 (in Chinese with English abstract).
     Li X C, Zhao X F, Zhou M F, Chen W T and Chu Z Y. 2015. Fluid inclusion and isot opic constraints on the origin of the Paleoproterozoic Yinachang Fe_Cu_(REE) dep osit, southwest China[J]. Econ. Geol., 110(5): 1339_1369.
     Li Y, Yang J S, Zhang J, Li T F, Chen S Y, Ren Y F and Xu X Z. 2011. Tectonical significance of the Carboniferous volcanic rocks in eastern Tianshan[J]. Acta Petrologica Sinica, 27(1): 193_209 (in Chinese with English abstract).
     Liu S W, Guo Z J, Zhang Z C, Li Q G and Zheng H F. 2004. Nature of the Precambri an metamorphic blocks in the eastern segment of Central Tianshan: Constraint fro m geochronology and Nd isotopic geochemistry[J]. Science in China Series D: Ea rth Sciences, 47(12): 1085_1094.
     Lu D R and Ji J S. 1995. The geochemical characteristics and genetic type of the Yamansu iron deposit in Xinjiang[J]. Northwestern Geology, 16(1): 15_19 ( in Chinese).
     Luo T, Liao Q A, Chen J P, Zhang X H, Guo D B and Hu Z C. 2012. LA_ICP_MS zircon U_Pb dating of the volcanic rocks from Yamansu Formation in the Eastern Tiansha n, and its geological significance[J]. Earth Science_Journal of China Univ ersity of Geoscience, 37(6): 1338_1352 (in Chinese with English abstract).
     Mao J W, Goldfarb R J, Wang Y T, Hart C J, Wang Z L and Yang J M. 2005. Late Pal eozoic base and precious metal deposits, East Tianshan, Xin_jiang, China: Charac teristics and geodynamic setting[J]. Episodes_Newsmagazine of the Internat ional Union of Geological Sciences. 28(1): 23_30.
     Mark G, Oliver N H S and Williams P J. 2006. Mineralogical and chemical evol utio n of the Ernest Henry Fe oxide_Cu_Au ore system, Cloncurry district, northwest Q ueensland, Australia[J]. Mineralium Deposita, 40(8): 769_801.
     Marschik R and Fontboté L. 2001. The Candelaria_Punta del Cobre iron oxide Cu_A u (_Zn_Ag) deposits, Chile[J]. Econ. Geol., 96(8): 1799_1826.
     Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille R A and Martin W. 2002. Age o f mineralization of the Candelaria iron oxide Cu_Au deposit, and the origi n of the Chilean Iron Belt based on Re_Os isotopes[J]. Econ. Geol. 97: 59_71. 
     Meinert L D. 1992. Skarns and skarn deposits[J]. Geoscience Canada, 19(4): 145 _162.
     Meinert L D, Dipple G M and Nicolescu S. 2005. World skarn deposits[J]. Ec onomic Geology 100th Anniversary Volume, 299_336.
     Monteiro L V S, Xavier R P, de Carvalho E R, Hitzman M W, Johnson C A, Filho C R S and Torresi I. 2008. Spatial and temporal zoning of hydrothermal alteration a nd mineralization in the Sossego iron oxide_copper_gold deposit, Carajás Minera l Province, Brazil: Paragenesis and stable isotope constraints[J]. Mineralium Deposita, 43(2): 129_159.
     Qin K Z, Xiao W J, Zhang L C, Xu X W, Hao J, Sun S, Li J L and Tosdal R M. 2005. Eight stages of major ore deposits in northern Xinjiang, NW_China: Clues and co nstraints on the tectonic evolution and continental growth of Central Asia[A ]. M ineral deposit research: Meeting the global challenge[C]. Springer Berlin Heid elberg. 1327_1330.
     Rieger A A, Marschik R and Díaz M. 2012. The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: New evidence from microtherm ometry and stable isotope geochemistry[J]. Mineralium Deposita, 47(4): 359 _369.
     Ripley E M and Ohmoto H. 1977. Mineralogic, sulfur isotope, and fluid inclusion studies of the stratabound copper deposits at the Raul Mine, Peru[J]. Econ . Geol., 72(6): 1017_1041.
     Ripley E M and Ohmoto H. 1979. Oxygen and hydrogen isotopic studies of ore depos ition and metamorphism at the Raul mine, Peru[J]. Geochimica et Cosmochimica A cta, 43(10): 1633_1643.
     Rui Z Y, Goldfarb R J, Qiu Y M, Zhou T H, Pirajno F and Yun G. 2002. Paleozoic_E arly Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern Chin a[J]. Mineralium Deposita, 37(3): 393_418.
     Sengr A M C, NatalIn B A and Burtman V S. 1993. Evolution of the Altaid tecto nic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364: 299_307. 
     Sengr A M C and NatalIn B A. 1996. Paleotectonics of Asia: Fragments of s ynthe sis[A]. In: Yin A and Harrison T M, eds. The tectonic evolution of Asia[C]. Cambridge University Press. 486_640.
     Shen P, Pan H D and Dong L H. 2014. Yandong porphyry Cu deposit, Xinjiang, China : Geology, geochemistry and SIMS U_Pb zircon geochronology of host porphyries an d associated alteration and mineralization[J]. Journal of Asian Earth Scie nces, 80: 197_217.
     Sheppard S M F. 1986. Characterization and isotopic variations in natural waters [J]. Reviews in Mineralogy and Geochemistry, 16(1): 165_183.
     Suzuoki T and Epstein S. 1976. Hydrogen isotope fractionation between OH_bearing minerals and water[J]. Geochimica et Cosmochimica Acta, 40(10): 1229_1240.
     Taylor H P. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mine ral deposits[J]. Geochemistry of Hydrothermal Ore Deposits, 3: 229_302.
     Thayer T P. 1960. Some critical difference between alpine_type and stratiform pe ridotite_gabbro complexes[C]. Int. Geol. Congr., 21st., 13: 247_259.
     Thayer T P. 1964. Principal features and origin of podiform chromite deposits, a nd some observations on the Gulenien_Soridagdistrict, Turkey[J]. Econ. Geol., 59(8): 1497_1524.
     Tian Y Z. 2015. Genesis of high_Al chromitite of the Sartohay ophiolite, Xinjian g (dissertation for doctor degree)[D]. Supervisor: Yang J S. Beijing: Chinese Academy of Geological Sciences. 324p (in Chinese with English abstract).
     Ullrich T D and Clark A H. 1999. The Candelaria Cu_Au deposit, Ⅲ Región, Chil e: Paragenesis, geochronology and fluid composition[A]. In: Stanley C J, e t al. eds. Mineral deposits: processes to processing[C]. Balkema: Rotterdam. 201_204.
     Ullrich T D, Clark A H and Kyser T K. 2001. The Candelaria Cu_Au deposit, Ⅲ re gión, Chile: Product of long_term mixing of magmatic and evaporite_sourced fluids [abs]. Geological Society of America Abstracts with Programs, 33(6), A 3.
     Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G and Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evo lution of Phanerozoic seawater[J]. Chemical Geology, 161(1): 59_88.
     Vennemann T W and ONeil J R. 1993. A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent[J]. Chemical Geology, 103(1): 227_234.
     Vila T. 1996. Geology of the Manto Verde copper deposit, northern Chile: A specu lariterich, hydrothermal_tectonic breccia related to the Atacama fault zone[J] . Andean Copper deposits: New discoveries, mineralization styles and metallogeny, Soc. Econ. Geol. Spec. Publ, 5: 157_169.
     Wang J B., Wang Y W and He Z J. 2006. Ore deposits as a guide to the tectonic ev olution in the East Tianshan Mountains, NW China[J]. Geology in China, 33(3): 461_469 (in Chinese with English abstract).
     Wang Y W, Wang J B and Wang L J. 2005. Lithochemical factors for paragenetic Cu_ Ni sulfide and vanadium_titanomagnetite deposits: A case study from the Xiangsha nxi deposit, Xinjiang, China[A]. Mineral deposit research: Meeting the glo bal challenge[C]. Springer Belin Heidelberg. 1351_1354.
     Wang Y W, Wang J B, Wang L J and Fang T H. 2007. Magma_mixing genesis of quartz monzodiorite in the Weiya, Xinjiang[J]. Acta Petrologica Sinica, 23(4): 33_46 (in Chinese with English abstract).
     Williams P J, Barton M D, Johnson D A, Fontboté L, Halter A D, Mark G, Oliver N H S and Marschik R. 2005. Iron_oxide copper_gold deposits: Geology, space_t ime distribution, and possible modes of origin[J]. Econ. Geol., 371_405.
     Windley B F, Alexeiev D, Xiao W J, Krner A and Badarch G. 2007. Tectonic model s for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geologica l Society, 164(1): 31_47.
     Wu H, Li H Q, Chen F W, Lu Y F, Deng G, Mei Y P and Ji H G. 2006. Zircon SHRIMP U_Pb dating of plagiogranite porphyry in the Chihu molybdenum_copper district, H ami, East Tianshan[J]. Geological Bulletin of China, 25(5): 549_552 (in Chines e with English abstract).
     Xiao W J, Windley B F, Badararch G, Sun S, Li J, Qin K Z and Wang Z. 2004a. Pale ozoic accretionary and convergent tectonics of the southern Altaids: Implication s for the growth of central Asia[J]. Journal of the Geological Society, 161(3) : 339_342.
     Xiao W J, Zhang L C, Qin K Z, Sun S and Li J L. 2004b. Paleozoic accretionary an d collisional tectonics of the eastern Tianshan (China): Implications for the co ntinental growth of Central Asia[J]. American Journal of Science, 304(4): 370_ 395.
     Xiao W J, Zhang L C, Qin K Z, Sun S and Li J L. 2004c. Paleozoic accretionary an d collisional tectonics of the Eastern Tianshan (China): Implications for the co ntinental growth of central Asia[J]. American Journal of Science, 304(4): 370_ 395.
     Xiao W J, Windley B F, Huang B C, Han C M, Yuan C, Chen H L, Sun M, Sun S and Li J L. 2009. End_Permian to mid_Triassic termination of the accretionary processe s of the southern Altaids: Implications for the geodynamic evolution, Phanerozoi c continental growth, and metallogeny of Central Asia[J]. International Journa l of Earth Sciences, 98(6): 1189_1217.
     Xiao Y. 2003. Geological characteristics and prospecting direction of the Shaqua nzi copper deposit in Hami, Xinjiang[J]. Xinjiang Youse Jinshu, 26(2): 9_10 (i n Chinese).
     Xinjiang Uygur Autonomous Region Geological Survey (abv. XUARGS). 2003. Report f or target selection and potential resources in Caixiashan_Jintan in the Eastern Tianshan, Xinjiang[R]. 187p (in Chinese).
     Xu L L, Chai F M, Li Q, Zeng H, Geng X X, Xia F and Deng G. 2014. Geochemistry a nd zircon U_Pb age of volcanic rocks from the Shaquanzi Fe_Cu deposit in East Ti anshan Mountains and their geological significance[J]. Geology in China, 41(6) : 1771_1790 (in Chinese with English abstract).
     Zhang D Y. 2012. Petrogenesis, mineralization and geodynamic evolution in Ju eluotage area, Eastern Tianshan, northwest China (dissertation for doctor degree )[D ] . Supervisor: Zhou T F. Hefei: Hefei University of Technology. 217p (in Chinese with English abstract).
     Zhang D Y, Zhou T F, Yuan F, Liu S, Lu Y J, Xu C and Ning F Q. 2012. Geochronolo gy and geological indication of the native copper mineralized basalt formation i n Jueluotage area, Eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 28( 8): 2392_2400(in Chinese with English abstract).
     Zhang L C, Liu T B and Shen Y C. 2002. Isotopic geochronology of the Late Pa leoz oic Kangguer gold deposits of the East Tianshan Mountains, Xinjiang, northwest C hina[J]. Resource Geology, 52(3): 249_261.
     Zhang Z C, Hou T, Santosh M, Li H M, Li J W, Zhang Z H, Song X Y and Wang M. 201 4. Spatio_temporal distribution and tectonic settings of the major iron deposits in China: An overview[J]. Ore Geology Reviews, 57: 247_263.
     Zhang Z J, Sun J B, Hu M Y, Ji H W and Chen W. 2012. Study on stable isotopic ch aracteristics of the Hongyuntan iron deposit of Eastern Tianshan and their i mpli cations for the process of mineralization[J]. Acta Geoscientica Sinica, 33 (6): 918_924 (in Chinese with English abstract).
     Zhang Z Z, Gu L X, Wu C Z, Zhai J P, Li W Q and Tang J H. 2006. Weiya quartz sye nite in Early Indosinina from eastern Tianshan Mountains: Petrogenesis and tecto nic implications[J]. Acta Petrologica Sinica, 22(5): 1135_1149 (in Chinese wit h English abstract).
     Zhao L D, Chen H Y and Zhang L. 2014. Alteration and mineralization paragene sis of the Heijianshan Fe_Cu deposit in the Eastern Tianshan, Xinjiang[J]. Acta Ge ologica Sinica (English Edition), 88(s2): 407_408.
     Zheng Y F. 1991. Calculation of oxygen isotope fractionation in metal oxides[J ]. Geochemica et Cosmochimica Acta, 55(8): 2299_2307.
     Zheng Y F and Simon K. 1991. Oxygen isotope fractionation in hematite and magnet ite: A theoretical calculation and application to geothermometry of metamorphic iron_formation[J]. European Journal of Mineralogy. 3(5): 877_886.
     Zheng Y F. 1993a. Calculation of oxygen isotope fractionation in anhydrous silic ate minerals[J]. Geochemica et Cosmochimica Acta, 57(5): 1079_1091.
     Zheng, Y F. 1993b. Calculation of oxygen isotope fractionation in hydroxyl_beari ng silicates[J]. Earth and Planetary Science Letters. 120(3): 247_263.
     Zhou M F and Bai W J. 1992. Chromite deposits in China and their origin[J]. Mi neralium Deposita, 27(3): 192_199.
     Zhou T F, Yuan F, Zhang D Y, Fan Y, Liu S, Peng M X and Zhang J D. 2010. Geochro nology, tectonic setting and mineralization of granitoids in Jueluotage area , ea stern Tianshan, Xingjiang[J]. Acta Petrologica Sinica, 26(2): 478_520 (in Chin ese with English abstract).
     Zhu Q Q, Xie G Q, Mao J W, Li W, Li Y H, Wang J and Zhang P. 2015. Mineralogical and sulfur isotopic evidence for the incursion of evaporites in the Jinshandian skarn Fe deposit, Edong district, Eastern China[J]. Journal of Asian Earth Sc iences, 113: 1253_1267.   
     附中文参考文献   
     陈衍景, 倪培, 范宏瑞, F Pirajno, 赖勇, 苏文超, 张辉. 2007. 不同类型热液 金矿系统的流体包裹体特征[J]. 岩石学报, 23(9): 2085_2108.
     陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题[J ]. 岩石学报, 25(11): 2695_2726.
     程松林, 王新昆, 吴华, 毛启贵, 敖松坚, 韩春明. 2008. 新疆北山晚古生代内生金属矿床 成矿系列研究[J]. 新疆地质, 26(1): 43_48.
     邓小华, 王京彬, 王玉往, 李月臣, 方同辉, 毛启贵. 2014. 东天山卡拉塔格红石铜矿地质 特征及矿床成因初步探讨[J]. 矿产勘查, 5(2): 159_168.
     方维萱, 高珍权, 贾润幸, 刘正桃, 李丰收, 徐国端. 2006. 东疆沙泉子铜和铜铁矿床岩( 矿)石地球化学研究与地质找矿前景[J]. 岩石学报, 22(5): 1413_1424.
     侯林, 丁俊, 王长明, 廖震文, 郭阳, 王生伟, 王子正. 2013. 云南武定迤纳厂铁_铜_金_ 稀土矿床成矿流体与成矿作用[J]. 岩石学报, 29(4): 1187_1202.
     姜福芝, 秦克章, 方同辉, 王书来. 2002. 东天山铁矿床类型、地质特征成矿规律与找矿方 向[J]. 新疆地质, 20(4): 379_383.
     李厚民,丁建华,李立兴,姚通. 2014. 东天山雅满苏铁矿矽卡岩成因及矿床成因类型[J ]. 地质学报, 88(12): 2477_2489.
     李文明, 任秉琛, 杨兴科, 李有柱, 陈强. 2002. 东天山中酸性侵入岩浆作用及其地球动力 学意义[J]. 西北地质, 35(4): 41_64.
     李源, 杨经绥, 张健, 李天福, 陈松永, 任玉峰, 徐向珍. 2011. 新疆东天山石炭纪火山岩 及其构造意义[J]. 岩石学报, 27(1): 193_209.
     卢登蓉, 姬金生. 1995. 新疆雅满苏铁矿地球化学特征及矿床成因[J]. 西北地质, 1 6(1): 15_19.
     罗婷, 廖群安, 陈继平, 张雄华, 郭东宝, 胡兆初. 2012. 东天山雅满苏组火山岩LA_ICP_M S锆石U_Pb定年及其地质意义[J]. 地球科学(中国地质大学学报), 37(6): 1338_1352.
     田亚洲. 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因(博士论文)[D]. 导师:杨经 绥. 北京:中国地质科学院. 234页.
     王京彬, 王玉往, 何志军. 2006. 东天山大地构造演化的成矿示踪[J]. 中国地质, 3 3(3): 461_469.
     王玉往, 王京彬, 王莉娟, 方同辉. 2007. 新疆尾亚地区石英二长闪长岩的岩浆混合成因[ J]. 岩石学报, 23(4): 733_746.
     吴华, 李华芹, 陈富文, 路运发, 邓岗, 梅玉萍, 姬后贵. 2006. 东天山哈密地区赤湖钼铜 矿区斜长花岗斑岩锆石SHRIMP U_Pb年龄[J]. 地质通报, 25(5): 549_552.
     肖昱. 2003. 新疆哈密市沙泉子铜矿地质特征及其找矿方向[J]. 新疆有色金属, 26(2): 9_12.
     新疆维吾尔自治区地质调查院. 2003. 新疆东天山彩霞山_金滩一带靶区优选及资源潜力评 价报告[R]. 187页.
     徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚. 2014. 东天山沙泉子铁铜矿区火山岩 地球化学特征、锆石U_Pb年龄及地质意义[J]. 中国地质, 41(6): 1771_1790.
     张达玉. 2012. 新疆东天山觉罗塔格地区成岩成矿作用及地球动力学过程(博士论文)[D ]. 导师:周涛发.合肥:合肥工业大学. 217页.
     张达玉, 周涛发, 袁峰, 刘帅, 许超, 宁福泉. 2012. 新疆东天山觉罗塔格地区自然铜矿化 玄武岩的成岩年代及其地质意义[J]. 岩石学报, 28(8): 2392_2400.
     张增杰, 孙敬博, 胡明月, 纪宏伟, 陈文. 2012. 东天山红云滩铁矿稳定同位素地质特征及 其对成矿作用过程的指示[J]. 地球学报, 33(6): 918_924.
     张遵忠, 顾连兴, 吴昌志, 翟建平, 李伟强, 唐俊华. 2006. 东天山印支早期尾亚石英正长 岩:成岩作用及成岩意义[J]. 岩石学报, 22(5): 1135_1149.
     周涛发, 袁峰, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇. 2010. 新疆东天山觉罗塔格地区花 岗岩类年代学、构造背景及其成矿作用研究[J]. 岩石学报, 26(2): 478_502.