DOi:10.16111/j.0258_7106.2016.06.003
四川盆地三叠纪古盐湖已达钾石盐析出阶段——来自石盐流体包裹体化学组成的约束
(1 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点实验室, 北京 100037; 2 中国地质大学, 北京100083; 3 国家地质实验测试中心, 北京1000 37)
第一作者简介孙小虹, 女, 1983年生, 博士后, 高级工程师, 矿产普查与勘探专业 。 Emai: sxhbei@163.com **通讯作者刘成林, 男, 1963年生, 研究员, 博士研究生导师, 主要从事钾盐等沉 积与非金属矿研究。 Email: liuchengl@263.net
收稿日期2016-08-30;
改回日期2016-10-10
本文得到中国地质科学院基本科研业务费项目(编号: K1405)、国家重点基础研究计划“ 973
摘要:石盐的流体包裹体成分可提供古流体组成的物理化学信息,用以探查 卤水组成变化及环 境演化规律等。四川盆地位于上扬子地台,其中的早-中三叠纪沉积建造是中国海相找钾的 有 利层位之一。获取石盐沉积时期的卤水成分信息,是深刻认识四川盆地古海水蒸发浓缩程度 的重要途径。文章利用激光剥蚀电感耦合等离子体质谱法,对采自川东地区长平3井嘉陵江 组的石盐流体包裹体开展了化学组成分析,结果显示古卤水化学类型为Mg_SO4型;流体包 裹体中 的ρ(K+)与现代海水浓缩到钾石盐析出阶段的ρ(K+)基本一致,可能揭示了盆 地三叠纪时期古卤水已达到钾石盐析出阶段,对四川盆地沉积环境演化及钾盐成矿规律研究 等具有重要的理论意义。
关键词:
地球化学;流体包裹体;石盐;化学组成;三叠纪卤水;四川盆地
文章编号: 0258_7106 (2016) 06_1157_12 中国分类号: P599; P619.21+1 文献标志码:A
Argument that brine of salty lake in Sichuan Basin had reached crystallizing
p oint of potash minerals during Triassic: Evidence from chemical
compos ition of fluid inclusions in halite
p oint of potash minerals during Triassic: Evidence from chemical
compos ition of fluid inclusions in halite
(1 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Minera l Resources, Chinese Academy of Geological Sciences, Beiji ng 100037, China; 2 China University of Geosciences, Beijing 100083, China; 3 National Research Center for Geoanalysis, Beijing 100037, China)
Abstract:The chemistry of primary fluid inclusions in halite can be used to study bri ne composition change and environment evolution of the salt lake. Sichuan Basin is located in the northwest of the Yangtze Platform, and its early_middle Triass ic sedimentary formation is one of the favorable stratigraphic horizons for mari ne potash exploration in China. The obtaining of the brine composition during ha lite deposition is an important way for understanding evaporation degree of the ancient seawater in Sichuan Basin. In this paper, the chemical composition of fl uid inclusions in the halite in the fourth member of Jialingjiang Formation was tested by laser ablation inductively coupled plasma mass spectrometry (LA_ICP_MS ). The results show that the brine in fluid inclusions has less Ca2+ but a bundant SO2-4, which suggests the ancient brine chemistry belongs to Mg_ SO4 type. Pota ssium concentration in fluid inclusions is basically consistent with that in mod ern seawater when it is concentrated to the sylvite precipitation stage. It is r evealed that Triassic brine of Sichuan Basin had reached the crystallizing point of potash minerals. The conclusion reached by the authors will be of important theoretical significance for studying sedimentary environmental evolution and me tallogenic regularity of potash resources in Sichuan Basin.
Key words:
geochemistry, fluid inclusion, halite, Sichuan Basin, Tri assic brine, chemical composition
自20世纪六七十年代以来,四川盆地早_中三叠纪沉积建造一直被认为是中国海相钾盐找矿 有利层位 之一。大量的研究工作(蔡克勤等,1986;林耀庭,1994;1995;林耀庭等,2009;黄建国 ,1998)已基本查明了含盐系的分布及赋存特征,发现了富钾卤水、成层分布的杂卤石及微 少量的无水钾镁矾、硫镁矾等钾镁盐矿物,但至今并未发现可溶性钾矿层,找钾工作尚未取 得实质性进展。由此,出现了四川盆地早-中三叠纪能否形成钾盐(钾盐镁矾、钾石盐、光 卤 石等)矿床的争议性问题,其中,最关键的问题是早_中三叠纪时期的古盐湖卤水是否演化 到 钾盐析出阶段,而回答此问题最直接的方法就是研究石盐晶体内的原生的流体包裹体,并分 析其化学组成。
石盐原生流体包裹体可以记录海水离子成分的变化,推断过去地球表面水体化学类型特征及 环境演化规律(Lowenstein et al., 2002;刘兴起等,2007),并提供古代海水的准确Mg 2+/Ca2+比值(Khmelevska et al., 1998;2006;Lowenstein et al., 2001 ;2003;Brennan et al.,2002;Satterfield et al., 2005)。盐类矿物单个流体包裹体 化学组成分析技术主要有超微化学分析法(Petrychenko et al., 2005; Kovalevych et al ., 2006)、激光剥蚀电感耦合等离子体质谱法(Shepherd et al., 1995; Shepherd et al .1998; 2000; Ghazi and Mohamad, 2000)、低温冷冻扫描电镜_能谱法(Timofeeff et al., 2000; 2001 ; 2006; Lowenstein et al., 2001)及显微拉曼光谱法(Frezzotti et al., 2011)。其 中,激光剥蚀电感耦合等离子体质谱(LA_ICP_MS)技术具有高灵敏度、低检出限等优点( 胡圣虹等,2001),重要的是能对单个包裹体进行原位、多元素同时检测,为成矿流体研究 提供了一个新的手段。盐类矿物因易受潮、易溶解、易结晶,以及包裹体体积较小等特点给 流 体包裹体定量分析带来较大困难(袁见齐等,1991)。课题组人员联合国家地质实验测 试中心,经过多年的摸索与实践,在国内首次将激光剥蚀ICP_MS测试方法应用于盐类矿物单 个流体包裹体成分的研究(Sun et al., 2013)。本文通过对川东地区长平3井的石盐样品 进 行包裹体岩相学观察,选取代表性原生流体包裹体,采用LA_ICP_MS法测定包裹体化学组成 ,根据 测试结果,对流体包裹体所记录的四川盆地三叠系嘉陵江组沉积时期古卤水化学组成及其演 化进行了分析。
1地质背景
四川盆地是在扬子古板块、克拉通台地基础上形成和发展起来的复合型或叠合型盆地(张岳 桥等,2011),盆地基地由前震旦系变质地层组成,经历了中元古代多次地壳增生作用,在 晋宁运动(1000~830 Ma)后固结(Qiu,2000;Zheng,2006;陆松年等,2004)。震旦纪 至早-中三叠世,整个扬子地块以升降运动为主导,发育一套巨厚的,以碳酸盐岩、泥岩、 砂 岩、蒸发岩等为主的台地相和大陆边缘相沉积(张岳桥等,2011)。印支期,四川盆地已具 盆地雏形,随后在克拉通沉积背景上叠加了中、新生代陆相沉积,后经喜马拉雅运动全面 褶皱,形 成现今具有明显菱形边框的构造面貌。按断褶构造发育程度来分区,大致可分为川东高陡断 褶构造区、川南—川西南中—低缓断褶构造区、川中平缓构造区、川西中—低缓断褶构造区 。
四川盆地早-中三叠世有6个成盐期,分属嘉陵江组和雷口坡组,即为嘉二2(T1j 2_2),嘉四2(T1j4_2),嘉五2~雷一1(T1j5_2~T2 l1_1)(在川东万县、云阳地区雷口坡组称为巴东组),雷一3(T2l1_ 3)、雷三2(T2l3_2)、雷四2(T2l4_2)。其中,嘉二2(T 1j2_2),盐岩主要分布在盆地东部,盆地的大部分区域为石膏沉积;嘉四2 (T1j4_2)时期,四川盆地大部分地区都有盐岩沉积,沉积厚度比较大,最厚 层达51.39 m;嘉五2~雷一1(T1j5_2~T2l1_1)期,对于嘉4 的沉积具有继承性,但沉积区相对较小;雷一3(T2l1_3)沉积期 的盐岩主要分布在封闭条件较好的小盐盆里,沉积厚度不大;雷三2(T2l3_2 )盐岩主要分布在川西地区,而且成盐作用较强,平均厚度达102.7 m;雷四2(T2l 4_2)盐岩主要分布在成都盐盆,且成盐作用范围不大,在川西南、川中、川东地区均 结束了成盐历史。
2研究方法
2.1包裹体样品及岩相学观察
本次研究的样品采自重庆市长寿区长平3井嘉陵江四段二亚段的石盐岩中,该钻井位于川东 万州凹褶带垫江次级凹陷盐盆南缘的双龙构造上,钻井位置参考汪明泉等(2015)。样品深 度为: 2768.45 m (Lg123)、2794.13 m (Lg249 )、2795.87 m (Lg257)。其中, 样品Lg123和Lg257的岩性为灰色—橙色石盐; 样品Lg249岩性为灰色石盐,中间夹2~3 cm 厚的无色透明石盐, 颗粒大小2~3 mm(图1)。
为了避免磨片过程中破坏石盐流体包裹体,首先选取晶形较好的石盐颗粒, 用 小刀切成厚度约0.5~1 mm 薄片,在显微镜下进行岩相学观察,并放入密封袋置于干燥器 内 保存。原生包裹体多分布于石盐颗粒的中部,以单一液相和气液两相为主(图2),少量包 裹体里发现有子晶(图2b)。包裹体形态主要为正方形、近正方形及长方形,大小不一,一 般2~60 μm,多呈面状和条带状分布。偶见包裹体大小达到100 μm左右,均孤立出现。由 于石盐薄片未经磨平处理,镜下可见多个石盐晶体面(图2,用P1~PX表示不同晶体面), 原生包裹体一般沿晶体生长带生长,形态规则,成群出现。
2.2石盐包裹体化学组成的测定
石盐流体包裹化学组成的测定由国家地质实验测试中心完成,采用激光剥蚀ICP_MS法,使用 Elem ent 2型等离子体质谱仪(德国Finnigan公司)与UP 213型激光器(New Wave 公司)(表1) 。激光 波长为213 nm,脉冲宽度为4 ns。在激光剥蚀采样条件下,采用高纯氦气作为剥蚀物质的载 气,以优化剥蚀和传输效率。实验中作用于样品的实际能量控制在0.03~0.06 mJ,剥蚀 能 量密度控制在7~14 J/cm2。采用点剥蚀模式,每个分析点的气体背景采集时间约为15 s ,信号采集时间为60 s,ICP_MS信号测量控制60次/分钟。
校准方法采用内标_外标结合法(Sun et al., 2013;胡明月等,2008)。① 外标法:采用 纯石英毛细管,将配置好的标准溶液吸入毛细管中,快速用环氧树脂胶封口。在测试分析时 ,将制作好的人工流体包裹体用双面胶粘在玻璃片上,与测试样品一起放入激光剥蚀样品室 。② 内标法:石盐包裹体样品选择Na作内标元素,Na含量根据理论值计算为141.62 g/L。 假设校准仪器的标准和未知样品中各元素之间的相对灵敏度保持不变,即根据内标元素和待 测元素变化的一致性进行校正(胡明月等,2008;Longerich et al., 1996)。
3研究结果
本次研究对3件石盐样品共计22个石盐流体包裹体进行了激光剥蚀ICP_MS化学组成的测定( 表2),图3b显示了典型石盐样品测试过程中质谱信号强度随时间的变化情况。在24.1 s之 前,测试的信号强度为背景值,常量元素K、Na、Ca、Mg的信 号强度很平稳,微量元素Sr、Rb、B的信号强度波动 稍大;24.1 s时,激光剥蚀到石盐样品时,先是出现Na和Cl的信号,随后 Na和Cl信号强度维持一个平 稳状态;61.6 s时,激光打开流体包裹体,K、Ca、Mg、Rb、Sr 、B 、Li的信号强度同时显著升高;之后,Na的信号强度稍有下降,而其他各个元素信号强度迅 速下降至背景值。
![]() |
表 1LA_ICP_MS工作参数
Table 1Laser ablation (LA)_ICP_MS operating conditions
|
![]() |
图 1长平3井嘉陵江四段岩心柱状简图及样品岩芯照片
1—深灰色硬石膏; 2—褐色硬石膏; 3—深灰色白云岩; 4—灰色石盐; 5—橘色石盐; 6—白色石盐; 7—深灰色石盐; 8—橘色含硬石膏石
盐岩; 9—灰色含硬石膏石 盐岩; 10—黄色含硬石膏石盐岩; 11—灰色含石盐硬石膏; 12—深灰色含石盐硬石膏
Fig. 1Core histogram and halite in the forth member of Jialingjiang Formation of Changping third well
1—Dark gray anhydrite; 2—Brown anhydrite; 3—Dark gray dolomite; 4—Gray halit e; 5—Orange halite; 6—White halite; 7—Dark gray halite; 8—Orange anhydrit e-bearing halite; 9—Gray anhydrite-bearing halite; 10—Yellow anhydrite_beari ng halite; 11—Gray salt-bearing anhydrite;12—Dark gray salt_bearing anhydrite
|
![]() |
图 2石盐流体包裹体显微镜照片
a. 样品Lg123; b. 样品Lg249; c~h. 样品Lg257; g. 包裹体7_1_16被激光剥蚀前的照片 ; h. 包裹体7_1_16被激光剥蚀
后的照片. 6_34_3、6_34_4等为包裹体测试编号; P1~PX表示包裹体所处晶面
Fig. 2Fluid inclusions in halite
a. Sample Lg123; b. Sample Lg249; c~h. Sample Lg257; g. Photo of fluid inclusio n (7_1_16) before laser ablation; h. Photo of fluid
inclusion (7_1_16) after l as er ablation. 6_34_3, 6_34_4 et al: Analysis number for inclusions; P1~PX: Faces that inclusions are in
|
![]() |
图 3石盐流体包裹体(a)和石盐单个包裹体质谱信号强度随时间的变化(b)
Fig. 3The fluid inclusion in halite (a) and MS signal intensity vs. time for s ingle fluid inclusion in halite (b)
|
![]() |
图 4石盐流体包裹体中K(图a)、Ca(图b)、Mg(图c)三种元素的含量
Fig. 4Content of potassium (a), calcium (b) and magnesium (c) in fluid inclusi ons in halites
|
![]() |
表 2长平3井嘉陵江组石盐流体包裹体成分分析结果
Table 2 Analytical results of fluid inclusions in halites in Jialingjiang Format ion of Changping third well
|
分析结果还显示,同一样品的不同流体包裹体 化学组分变化较大(图4、表2),根据包裹体岩相学 观察可知,所测试包裹体处于不同的石盐晶体面P1~PX(图2)。样品Lg123包裹体中 ρ (K+)为2.69~38.57 g/L(剔除含子晶包裹体的数据,下同),包裹体分布于3个 晶面上,其中P2晶面上2个气液两相包裹体(6_34_8和6_34_9)的ρ(K+)、 ρ(Mg2+)等接近,PX晶面上2个流体包裹体化学组成分比较接近。Lg249包裹 体 中ρ(K+)为13.42~63.51 g/L,Lg257包裹体中ρ(K+)为1.82 ~56.01 g/L,处于同一晶面上的包裹体化学组分变化较小,而不同晶面上包裹体组分变化 较大。
4讨论
4.1石盐包裹体化学数据的可靠性
石盐及石盐中流体包裹体极易随物理化学条件的变化而发生溶解、重结晶、碎裂、愈合和变 形等作用(袁见齐等,1991;杨吉根,1994),会破坏石盐流体包裹体信息保留的原始性, 因此,准确判断原生包裹体是分析石盐包裹体化学组成的关键。前人已建立了一套显微 镜下区分原生和次生石盐流体包裹体的准则和标志(Lowenstein et al., 1985; Hardie et al., 1985;杨吉根,1994),认为原生流体包裹体多呈负立方体晶型,其形态与石盐主晶 的形态一致,常为群体分布,在群体中绝大多数流体包裹体的大小近一致, 且多呈面状分布 。而次生包裹体形态不规则,分布于石盐主晶的解理缝及裂隙中,单体呈孤立状,群体呈曲 线状排列。根据以上判别标准,在包裹体岩相学详细观察的基础上,主要选取了单一液 相和气液两相的原生包裹体进行流体化学组成分测试(图2,表2)。此外,为了对比研究, 也分析了少量的气、液、固三相和固、液两相石盐流体包裹体,共测定了K、Mg、 Ca、Rb、 Sr、Li 、B7种元素的含量。同一样品中流体包裹体成分变化较大,可能与包裹体形成于不同期次 有关,位于同一晶面上包裹体成分比较接近(表2),反之成分差异较大,指示它们可能为 不同期次生长的包裹体。此外,分析结果还显示,钾与镁、铷的含量具有很好的正相关性( 图5),符合盐湖卤水蒸发浓缩规律。以上结果均表明测试数据具有一定的准确性和可靠性 。
4.2石盐包裹体化学组成对古卤水演化信息的指示
整个地质历史海水的成分演化控制着海相钾盐的时代分布(Hardie, 1996;Lowenstein e t al., 2001),海水的演化经历了方解石—文石海的交替, 海水中的Mg/Ca 比也随着发生 很 大的变化:“方解石海”时期,Mg2+/Ca2+比值小于2;“文石海”时期,Mg 2+/Ca2+比值大于2。大量研究表明,石盐包裹体可以记录海水离子成分的变化, 并 提供古代海水的准确Mg2+/Ca2+比值(Khmelevska et al., 2000;2006;Lowe nstein et al., 2001;2003;Brennan et al.,2002;Satterfield et al., 2005)。本 次研究分析的3个石盐样品包裹体的Mg2+/Ca2+比值,基本大于2(表2), 属于Ca2+相对低,SO2-4 相对高的“文石海”时期(孟凡巍等,2012),卤水成分为Mg_SO4型,与 全球二叠纪—三叠纪古海水特征相近(Lowensteinet al., 2001)。
![]() |
图 5石盐流体包裹体钾含量与镁、铷含量的关系
Fig. 5Relationship between content of potassium and that of magnesium, between content of potassium and that of
rubidium in fluid inclusions in halites
|
![]() |
表 3石盐流体包裹体成分与川25井、黄海海水浓缩到钾石盐沉积时期卤水成分对比
Table 3Chemical composition of fluid inclusions in halite in Sichuan Basin, br ine in Chuang 25# hole,
and Yellow Sea water after sylvite deposition in the evaporation process
|
另外,在川东北川25 井钻遇的富钾卤水,一般 认为,是沉积变质和固态钾盐溶滤的复合成因(林耀庭,1995;林耀庭等,2002a;2002b; 李 亚文等,1998),而石盐包裹体流体平均组成与川25井 卤水组成基本一致(表3),可以说明川25井卤水应为原生沉积卤水,并非淋滤 成因。这与盆地古海水在沉积以后基本处于深埋封闭环境,不具备渗入水淋滤条件的观点( 宋鹤彬等,1988)是相吻合的。
一般认为在卤水蒸发浓缩过程中,早期析出石膏,随着钾、镁含量的升高,在持续蒸发浓缩 的条件下,将形成钾盐。杂卤石是最易保存的钾盐矿物之一,无论其成因如何,杂卤石的存 在 都可以说明盆地中可能存在易溶钾盐矿物或矿层。包裹体分析结果还显示,含子晶的石盐流 体包裹体中钾含量ρ(K+)明显高于气液两相和单一液相两类包裹体中钾含量,而ρ (Mg2+)和ρ(Ca2+)基本一致(图4),因而推测石盐包裹体中的 子晶很可能是钾石盐矿物。此外,通过扫描电镜 能谱分析疑似见微量钾石盐(赵艳军等,2015),进一步说明川东地区局部古盐湖可能有钾 石盐析出。
5结论
通过川东地区长平3井中的石盐包裹体进行岩相学研究以及化学组成测定,主要得出以下结 论:(1) 石盐样品包裹体化学组成结果表明四川盆地三叠纪古海水富Mg贫Ca,为Mg_SO4型海 水。
(2) 石盐流体包裹体中ρ(K+)平均为24.12 g/L,与现代海水浓缩到钾 石 盐析出阶段的ρ(K+)基本一致,推断三叠纪四川盆地古海水可能已达到钾石盐析 出阶段。
志谢四川盆地钻井样品采集过程得到中盐重庆长寿盐化有限公司领导及中国 地质科学院成都矿产综合利用研究所龚大兴博士等协助,在此表示感谢。
参考文献
Brennan S T and Lowenstein T K. 2002. The major_ion composition of Silur ian seawater[J]. Geochimica et Cosmochimica Acta, 66(15): 2683_2700.
Khmelevska V M, Peryt T M and Petrichenko O I. 1998. Secular variation in seawat er chemistry during the Phanerozoic as indicated by brine inclusions in halite[ J]. The Journal of Geology,106: 695_712.
Cai K Q and Yuan J Q. 1986. Metallogenic conditions and prospecting direction fo r the Triassic potash deposits in Sichuan Basin[J]. Geology of Chemical Mi nerals, 8(2):4_12 (in Chinese).
Chen Y H. 1983. Sequence of salt separation and regularity of some trace element s distribution during isothermal evaporation(25℃) of the Huanghai sea water[J ]. Acta Geologica Sinica, (4): 379_390 (in Chinese with English abstract).
Frezzotti M L, Tecce F and Casagli A. 2011. Raman spectroscopy for fluid inclusi on analysis[J]. Journal of Geochemical Exploration, 112: 1_20.
Ghazi A M and Stephen S. 2000. Trace element determination of single fluid inclu sions by laser ablation ICP_MS: Applications for halites from sedimentary basins [J]. The Analyst, 125 (1): 205_210.
Hardie L A, Lowenstein T K and Spencer R J. 1985. The problem of distinguishing between primary and secondary features in evaporates[A]. In: Schreiber B C , Harb er H I, eds. Sixth International Symposium on Salt[C]. Alexandia, Virginia, US A: The Salt Institute, 11_39.
Hardie L A.1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash e vaporites over the past 600 m.y[J]. Geology, 24: 279_283.
Hu M Y, He H L, Zhan X C, Fan X T, Wang G and Jia Z R. 2008. Matrix normalizatio n for in_situ multi_element quantitative analysis of zircon in Laser Ablation_In ductively Coupled Plasma Mass Spectrometry[J]. Chinese Journal of Analytic al Chemistry, 36(7): 947_953 (in Chinese with English abstract).
Hu S H, Hu Z C, Liu Y S, Luo Y, Lin S L and Gao S. 2001. New techniques of major and minor elemental analysis in individual fluid inclusion_laser ablation induc tively coupled plasma mass spectrometry(LA_ICP_MS)[J]. Earth Science Frontiers , 8(4): 434_440 (in Chinese with English abstract).
Huang J G. 1998. The Triassic potash deposits in China: An example from the Sich uan Basin[J]. Sedimentary Facies and Palaeogeography, 18(4):23_43 (in Chinese with English abstract).
Khmelevska V M, Peryt T M, Zang W and Vovnyuk S V. 2006. Composition of brines i n halite_hosted fluid inclusions in the upper Ordovician, Canning Basin, western Australia: New data on seawater chemistry[J]. Terra Nova, 18(2): 95_103.
Kovalevych V M, Marshall T, Peryt T M, Petrychenko O Y and Zhukova S A. 2006. Ch emical composition of seawater in Neoproterozoic: Results of fluid inclusion stu dy of halite from Salt Range (Pakistan) and Amadeus Basin (Australia)[J]. Prec ambrian Research, 144: 39_51.
Li Y W, Cai K Q and Han W T. 1998. Origin of potassium_rich brine and the metamo rphism of Triassic evaporites in Sichuan Basin[J]. Geoscience, 12(2): 222_228 (in Chinese with English abstract).
Lin Y T. 1994. On K_bearing property of the marine Triassic and search for potas h salt in Sichuan Basin[J]. Acta Geologica Sichuan, 14(2):111_120(in Chinese w ith English abstract).
Lin Y T. 1995. Metamorphism of Triassic salt depositions in Sichuan Basin and it s guide to prospecting for potash resources[J]. Geology of Chemical Minerals, 17(2):93_102 (in Chinese with English abstract)
Lin Y T and Xu Z L. 2009. Significance of salts preservation condition research on finding potassium of the Triassic in Sichuan Basin[J]. Journal of Salt Lake Research, 17(1):6_12(in Chinese with English abstract).
Lin Y T, He J Q, Wang T D and Ye M C. 2002a. Geochemical characteristics of pota s sium_rich brine in middle Triassic Chendu Salt Basin of Sichuan Basin and its pr ospects for brine tapping[J]. Geology of Chemical Minerals, 24(2):72_84 (in Chinese with English abstract)
Lin Y T and Zhen M Q. 2002b. Theory on guidance of heat_melted salt of Triassic p eriod in search of potash in Sichuan Basin[J]. Journal of Salt Lake Research, 10(1): 8_17 (in Chinese with English abstract).
Liu X Q, Ni P, Dong H L and Wang T G. 2007. Homogenization temperature and its s ignificance for primary fluid inclusion in halite formed in Chaka salt lake, Qar dam basin[J]. Acta Petrologica Sinica, 23(1): 113_116(in Chinese with English abstract).
Lu S N, Li H K, Chen Z H, Yu H F, Jin W and Guo K Y. 2004. Relationship between Neoproterozoic Cratons of China and the Rodinia[J]. Earth Science Frontier s, 11(2): 515_523(in Chinese with English abstract).
Longerich H P, Jackson S E and Gunther D. 1996. Inter_laboratory note. Laser abl ation inductively coupled plasma mass spectrometric transient signal data acquis ition and analyte concentration calculation[J]. Journal of Analytical Atom ic Spectrometry, 11(9): 899_904.
Lowenstein T K and Hardie L A. 1985. Criteria for the recognition of salt_pan e vaporates[J]. Sedimentology, 32: 627_644.
Lowenstein T K and Brennan S T. 2002. Fluid inclusions in paleolimnological stud ies of chemical sediments tracking environmental change using lake sediments[J ]. In: Last W M and Smol J P, eds. Developments in Paleoenvironmental Research: Sp ringer Netherlands, 189_216.
Lowenstein T K, Timofeeff M N, Brennan S T, Hardie L A and Demicco R V. 2001 . Os cillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions [J]. Science, 294: 1086_1088.
Lowenstein T K, Hardie L A, Timofeeff M N and Demicco R V. 2003. Secular variati on in seawater chemistry and the origin of calcium chloride basinal brines[J]. Geology, 31:857_860.
Meng F W, Liu C L and Ni P. 2012. To forecast sylvite deposits using the chemist ry of fluid inclusions in halite[J]. Acta Micropalaeontologica Sinica, 29(1): 62_69 (in Chinese with English abstract).
Petrychenko O Y, Peryt T M and Chechel E I. 2005. Early Cambrian seawater chemis try from fluid inclusions in halite from Siberian evaporites[J]. Chemical Geology, 219: 149_161.
Qiu Y M, Gao S, McNaughton N J, Groves D I and Ling W. 2000. First evidence of > 3.2 Ga continental crust in the Yangtze craton of South China and its implicatio ns for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28(1): 11_14.
Satterfield C L.2005. Paleobrine temperatures, chemistries, and paleoenvironment s of Silurian salina formation F_1 salt, Michigan Basin, USA, from petrography f luid inclusions in halite[J]. Journal of Sedimentary Research, 75(4): 534_ 546.
Shepherd T J, Ayora C, Cendon D I, Chenery S R and Moissette A. 1998. Quantitati ve solute ananlysis of single fluid inclusions in halite by LA_ICP_MS and cryo_S EM_EDS: Complementary microbeam techniques[J]. European Journal of Mineralogy, 10: 1097_1108.
Shepherd T J and Chenery S R. 1995. Laser ablation ICP_MS elemental ananlysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Coshmochim ica Acta, 59: 3997_4007.
Shepherd T J, Naden J, Chenery S R, Milodowski A E and Gillespie M R. 2000. Chem ical analysis of palaeogroundwaters: A new frontier for fluid inclusion research [J]. Journal of Geochemical Exploration, 69: 415_418.
Song H B, Song Z P and Xiao Z Q. 1988. Stable isotope geochemistry of potash_ric h b rine in No.25 well of Xuanhan area in northeastern Sichuan and its potash_prospe cting application[J]. Bulletin of the Institute of Mineral Deposits Chinese Ac ademy of Geological Sciences, 1: 51_67 (in Chinese with English abstract).
Sun X H, Hu M Y, Liu C L, Jiao P C, Ma L C, Wang X and Zhan X C. 2013. Compositi on determination of single fluid inclusions in salt minerals by Laser Ablation ICP_MS[J]. Chinese Journal of Analytical Chemistry, 41(2), 235_241.
Timofeeff M N, Blackburn W H and Lowenstein T K. 2000. ESEM_EDS: An improved tec hnique for major element chemical analysis of fluid inclusions[J]. Chemical Ge ology, 164(3~4): 171_182.
Timofeeff M N, Lowenstein T K, Brennan S T, Demicco R V, Zimmermann H, Horita J and von Borstel L E. 2001. Evaluating seawater chemistry from fluid inclusions i n halite: Examples from modern marine and nonmarine environments[J]. Geochimic a et Cosmochimica Acta, 65 (14): 2293_2300.
Timofeeff M N, Lowenstein T K, Da Silva M A M and Harris N B. 2006. Secular vari ation in the major_ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites[J]. Geochimica et Cosmochimica Acta, 70: 1977_1994.
Wang M Q, Zhao Y J, Liu C L and Ding T. 2015. Paleotemperature and significance of the evaporated seawater in salt_forming process of the forth member of Jialin gjiang Formation in the eastern Sichuan Basin[J]. Acta Petrologica Sinica, 31( 9): 2745_2750(in Chinese with English abstract).
Yang J G. 1994. The preliminary study of fluid inclusion in salt from five halit e deposits of four Provinces in southeast China[J]. Journal of Salt Lake Scien ce, 2(3): 1_9 (in Chinese with English abstract).
Yuan J Q, Cai K Q, Xiao R G and Chen H Q. 1991. The characteristics and genesis of inclusions in salt from Mengyejing potash deposit in Yunnan Province[J]. Ea rt h Science_Journal of China University of Geosciences, 16(2): 137_142 (in Chinese with English abstract).
Zhang Y Q, Dong S W, Li J H and Shi W. 2011. Mesozoic multi_directional compress ional tectonics and formation_reformation of Sichuan basin[J]. Geology in Chin a, 38(2):233_250 (in Chinese with English abstract).
Zhao Y J, Liu C L, Zhang H,Li Z Q, Ding T and Wang M Q. 2015. The controls of p aleotemperature on potassium salt precipitation in ancient salt lakes[J]. Acta Petrologica Sinica, 31(9): 2751_2756(in Chinese with English abstract).
Zheng J P, Griffin W L, O Reilly S Y, Zhang M, Pearson N and Pan Y M. 2006. Wide spread Archean basement beneath the Yangtze craton[J]. Geology, 34(6): 417_420 .
附中文参考文献
蔡克勤,袁见齐.1986.四川三叠系钾盐成矿条件和找矿方向[J]. 化工矿产地质, 8(2): 4_12.
陈郁华.1983.黄海海水25℃等温蒸发时的析盐序列及某些微量元素的分布规律[J]. 地质 学报,(4): 379_390.
胡明月,何红蓼,詹秀春,樊兴涛, 王广, 贾泽荣.2008.基体归一定量技术在激光烧蚀_ 等离子体质谱法锆石原位多元素分析中的应用[J]. 分析化学,36(7): 947_953.
胡圣虹,胡兆初,刘勇胜,罗彦,林守麟,高山.2001.单个流体包裹体元素化学组成分析 新技术——激光剥蚀电感耦合等离子体质谱(LA_ICP_MS) [J].地学前缘,8(4): 434_440 .
黄建国.1998. 中国三叠纪钾盐沉积——以四川为例[J].岩相古地理,18(4):23_43.
李亚文,蔡克勤,韩蔚田. 1998. 四川盆地三叠系蒸发岩的变质作用与富钾卤水的成因[J ]. 现代地质,12(2): 222_228.
林耀庭.1994.论四川盆地海相三叠系含钾性及找钾方向[J]. 四川地质学报,14(2):111_12 0.
林耀庭.1995.论四川盆地三叠系盐类变质作用及找钾方向[J]. 化工矿产地质,17(2):93_1 02.
林耀庭,许祖霖.2009. 论盐类保存条件研究对四川盆地三叠系找钾工作的重要性[J]. 盐 湖研究,17(1):6_12.
林耀庭,何金权,王田丁,叶茂才. 2002a. 四川盆地中三叠统成都盐盆富钾卤水地球化学 特征及其勘查开发前景研究[J]. 化工矿产地质,24(2):72_84.
林耀庭,郑茂全. 2002b. 论四川盆地三叠系盐类热融水溶变质对找钾方向的控制[J]. 盐 湖研究,10(1):8_17.
刘兴起,倪培,董海良,王天刚.2007.内陆盐湖石盐流体包裹体均一温度指示意义的现代 过程研究[J]. 岩石学报,23(1): 113_116.
陆松年,李怀坤,陈志宏,于海峰,金巍,郭坤一. 2004. 新元古时期中国古大陆与罗迪尼 亚超大陆的关系[J]. 地学前缘,11(2): 515_523.
孟凡巍,刘成林,倪培. 2012. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海 相成钾探讨[J]. 微体古生物学报. 29(1): 62_69.
宋鹤彬,宋正平,肖章棋. 1988. 川东北宣汉地区川2 井富钾卤水稳定同位素地球化学特征 及找钾意义[J]. 中国地质科学院矿床地质研究所所刊, 1: 51_67.
汪明泉,赵艳军,刘成林,丁婷. 2015. 四川盆地东部三叠系嘉陵江组成盐期浓缩海水古温 度及其意义[J]. 岩石学报,31(9):2745_2750.
杨吉根.1994. 我国东南四省五个岩盐矿床石盐中流体包裹体的初步研究[J].盐湖研究 ,2(3): 1_9.
袁见齐,蔡克勤,肖荣阁,陈卉泉.1991.云南勐野井钾盐矿床石盐中包裹体特征及其成因 的讨论[J]. 地球科学,16(2):137_142.
张岳桥,董树文,李建华,施炜. 2011. 中生代多向挤压构造作用与四川盆地的形成和改造 [J].中国地质,38(2):233_250.
赵艳军, 刘成林, 张华, LI Z Q, 丁婷, 汪明泉. 2015. 古盐湖卤水温度对钾盐沉积 的控制作用探讨[J]. 岩石学报, 31(9): 2751_2756.
Khmelevska V M, Peryt T M and Petrichenko O I. 1998. Secular variation in seawat er chemistry during the Phanerozoic as indicated by brine inclusions in halite[ J]. The Journal of Geology,106: 695_712.
Cai K Q and Yuan J Q. 1986. Metallogenic conditions and prospecting direction fo r the Triassic potash deposits in Sichuan Basin[J]. Geology of Chemical Mi nerals, 8(2):4_12 (in Chinese).
Chen Y H. 1983. Sequence of salt separation and regularity of some trace element s distribution during isothermal evaporation(25℃) of the Huanghai sea water[J ]. Acta Geologica Sinica, (4): 379_390 (in Chinese with English abstract).
Frezzotti M L, Tecce F and Casagli A. 2011. Raman spectroscopy for fluid inclusi on analysis[J]. Journal of Geochemical Exploration, 112: 1_20.
Ghazi A M and Stephen S. 2000. Trace element determination of single fluid inclu sions by laser ablation ICP_MS: Applications for halites from sedimentary basins [J]. The Analyst, 125 (1): 205_210.
Hardie L A, Lowenstein T K and Spencer R J. 1985. The problem of distinguishing between primary and secondary features in evaporates[A]. In: Schreiber B C , Harb er H I, eds. Sixth International Symposium on Salt[C]. Alexandia, Virginia, US A: The Salt Institute, 11_39.
Hardie L A.1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash e vaporites over the past 600 m.y[J]. Geology, 24: 279_283.
Hu M Y, He H L, Zhan X C, Fan X T, Wang G and Jia Z R. 2008. Matrix normalizatio n for in_situ multi_element quantitative analysis of zircon in Laser Ablation_In ductively Coupled Plasma Mass Spectrometry[J]. Chinese Journal of Analytic al Chemistry, 36(7): 947_953 (in Chinese with English abstract).
Hu S H, Hu Z C, Liu Y S, Luo Y, Lin S L and Gao S. 2001. New techniques of major and minor elemental analysis in individual fluid inclusion_laser ablation induc tively coupled plasma mass spectrometry(LA_ICP_MS)[J]. Earth Science Frontiers , 8(4): 434_440 (in Chinese with English abstract).
Huang J G. 1998. The Triassic potash deposits in China: An example from the Sich uan Basin[J]. Sedimentary Facies and Palaeogeography, 18(4):23_43 (in Chinese with English abstract).
Khmelevska V M, Peryt T M, Zang W and Vovnyuk S V. 2006. Composition of brines i n halite_hosted fluid inclusions in the upper Ordovician, Canning Basin, western Australia: New data on seawater chemistry[J]. Terra Nova, 18(2): 95_103.
Kovalevych V M, Marshall T, Peryt T M, Petrychenko O Y and Zhukova S A. 2006. Ch emical composition of seawater in Neoproterozoic: Results of fluid inclusion stu dy of halite from Salt Range (Pakistan) and Amadeus Basin (Australia)[J]. Prec ambrian Research, 144: 39_51.
Li Y W, Cai K Q and Han W T. 1998. Origin of potassium_rich brine and the metamo rphism of Triassic evaporites in Sichuan Basin[J]. Geoscience, 12(2): 222_228 (in Chinese with English abstract).
Lin Y T. 1994. On K_bearing property of the marine Triassic and search for potas h salt in Sichuan Basin[J]. Acta Geologica Sichuan, 14(2):111_120(in Chinese w ith English abstract).
Lin Y T. 1995. Metamorphism of Triassic salt depositions in Sichuan Basin and it s guide to prospecting for potash resources[J]. Geology of Chemical Minerals, 17(2):93_102 (in Chinese with English abstract)
Lin Y T and Xu Z L. 2009. Significance of salts preservation condition research on finding potassium of the Triassic in Sichuan Basin[J]. Journal of Salt Lake Research, 17(1):6_12(in Chinese with English abstract).
Lin Y T, He J Q, Wang T D and Ye M C. 2002a. Geochemical characteristics of pota s sium_rich brine in middle Triassic Chendu Salt Basin of Sichuan Basin and its pr ospects for brine tapping[J]. Geology of Chemical Minerals, 24(2):72_84 (in Chinese with English abstract)
Lin Y T and Zhen M Q. 2002b. Theory on guidance of heat_melted salt of Triassic p eriod in search of potash in Sichuan Basin[J]. Journal of Salt Lake Research, 10(1): 8_17 (in Chinese with English abstract).
Liu X Q, Ni P, Dong H L and Wang T G. 2007. Homogenization temperature and its s ignificance for primary fluid inclusion in halite formed in Chaka salt lake, Qar dam basin[J]. Acta Petrologica Sinica, 23(1): 113_116(in Chinese with English abstract).
Lu S N, Li H K, Chen Z H, Yu H F, Jin W and Guo K Y. 2004. Relationship between Neoproterozoic Cratons of China and the Rodinia[J]. Earth Science Frontier s, 11(2): 515_523(in Chinese with English abstract).
Longerich H P, Jackson S E and Gunther D. 1996. Inter_laboratory note. Laser abl ation inductively coupled plasma mass spectrometric transient signal data acquis ition and analyte concentration calculation[J]. Journal of Analytical Atom ic Spectrometry, 11(9): 899_904.
Lowenstein T K and Hardie L A. 1985. Criteria for the recognition of salt_pan e vaporates[J]. Sedimentology, 32: 627_644.
Lowenstein T K and Brennan S T. 2002. Fluid inclusions in paleolimnological stud ies of chemical sediments tracking environmental change using lake sediments[J ]. In: Last W M and Smol J P, eds. Developments in Paleoenvironmental Research: Sp ringer Netherlands, 189_216.
Lowenstein T K, Timofeeff M N, Brennan S T, Hardie L A and Demicco R V. 2001 . Os cillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions [J]. Science, 294: 1086_1088.
Lowenstein T K, Hardie L A, Timofeeff M N and Demicco R V. 2003. Secular variati on in seawater chemistry and the origin of calcium chloride basinal brines[J]. Geology, 31:857_860.
Meng F W, Liu C L and Ni P. 2012. To forecast sylvite deposits using the chemist ry of fluid inclusions in halite[J]. Acta Micropalaeontologica Sinica, 29(1): 62_69 (in Chinese with English abstract).
Petrychenko O Y, Peryt T M and Chechel E I. 2005. Early Cambrian seawater chemis try from fluid inclusions in halite from Siberian evaporites[J]. Chemical Geology, 219: 149_161.
Qiu Y M, Gao S, McNaughton N J, Groves D I and Ling W. 2000. First evidence of > 3.2 Ga continental crust in the Yangtze craton of South China and its implicatio ns for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28(1): 11_14.
Satterfield C L.2005. Paleobrine temperatures, chemistries, and paleoenvironment s of Silurian salina formation F_1 salt, Michigan Basin, USA, from petrography f luid inclusions in halite[J]. Journal of Sedimentary Research, 75(4): 534_ 546.
Shepherd T J, Ayora C, Cendon D I, Chenery S R and Moissette A. 1998. Quantitati ve solute ananlysis of single fluid inclusions in halite by LA_ICP_MS and cryo_S EM_EDS: Complementary microbeam techniques[J]. European Journal of Mineralogy, 10: 1097_1108.
Shepherd T J and Chenery S R. 1995. Laser ablation ICP_MS elemental ananlysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Coshmochim ica Acta, 59: 3997_4007.
Shepherd T J, Naden J, Chenery S R, Milodowski A E and Gillespie M R. 2000. Chem ical analysis of palaeogroundwaters: A new frontier for fluid inclusion research [J]. Journal of Geochemical Exploration, 69: 415_418.
Song H B, Song Z P and Xiao Z Q. 1988. Stable isotope geochemistry of potash_ric h b rine in No.25 well of Xuanhan area in northeastern Sichuan and its potash_prospe cting application[J]. Bulletin of the Institute of Mineral Deposits Chinese Ac ademy of Geological Sciences, 1: 51_67 (in Chinese with English abstract).
Sun X H, Hu M Y, Liu C L, Jiao P C, Ma L C, Wang X and Zhan X C. 2013. Compositi on determination of single fluid inclusions in salt minerals by Laser Ablation ICP_MS[J]. Chinese Journal of Analytical Chemistry, 41(2), 235_241.
Timofeeff M N, Blackburn W H and Lowenstein T K. 2000. ESEM_EDS: An improved tec hnique for major element chemical analysis of fluid inclusions[J]. Chemical Ge ology, 164(3~4): 171_182.
Timofeeff M N, Lowenstein T K, Brennan S T, Demicco R V, Zimmermann H, Horita J and von Borstel L E. 2001. Evaluating seawater chemistry from fluid inclusions i n halite: Examples from modern marine and nonmarine environments[J]. Geochimic a et Cosmochimica Acta, 65 (14): 2293_2300.
Timofeeff M N, Lowenstein T K, Da Silva M A M and Harris N B. 2006. Secular vari ation in the major_ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites[J]. Geochimica et Cosmochimica Acta, 70: 1977_1994.
Wang M Q, Zhao Y J, Liu C L and Ding T. 2015. Paleotemperature and significance of the evaporated seawater in salt_forming process of the forth member of Jialin gjiang Formation in the eastern Sichuan Basin[J]. Acta Petrologica Sinica, 31( 9): 2745_2750(in Chinese with English abstract).
Yang J G. 1994. The preliminary study of fluid inclusion in salt from five halit e deposits of four Provinces in southeast China[J]. Journal of Salt Lake Scien ce, 2(3): 1_9 (in Chinese with English abstract).
Yuan J Q, Cai K Q, Xiao R G and Chen H Q. 1991. The characteristics and genesis of inclusions in salt from Mengyejing potash deposit in Yunnan Province[J]. Ea rt h Science_Journal of China University of Geosciences, 16(2): 137_142 (in Chinese with English abstract).
Zhang Y Q, Dong S W, Li J H and Shi W. 2011. Mesozoic multi_directional compress ional tectonics and formation_reformation of Sichuan basin[J]. Geology in Chin a, 38(2):233_250 (in Chinese with English abstract).
Zhao Y J, Liu C L, Zhang H,Li Z Q, Ding T and Wang M Q. 2015. The controls of p aleotemperature on potassium salt precipitation in ancient salt lakes[J]. Acta Petrologica Sinica, 31(9): 2751_2756(in Chinese with English abstract).
Zheng J P, Griffin W L, O Reilly S Y, Zhang M, Pearson N and Pan Y M. 2006. Wide spread Archean basement beneath the Yangtze craton[J]. Geology, 34(6): 417_420 .
附中文参考文献
蔡克勤,袁见齐.1986.四川三叠系钾盐成矿条件和找矿方向[J]. 化工矿产地质, 8(2): 4_12.
陈郁华.1983.黄海海水25℃等温蒸发时的析盐序列及某些微量元素的分布规律[J]. 地质 学报,(4): 379_390.
胡明月,何红蓼,詹秀春,樊兴涛, 王广, 贾泽荣.2008.基体归一定量技术在激光烧蚀_ 等离子体质谱法锆石原位多元素分析中的应用[J]. 分析化学,36(7): 947_953.
胡圣虹,胡兆初,刘勇胜,罗彦,林守麟,高山.2001.单个流体包裹体元素化学组成分析 新技术——激光剥蚀电感耦合等离子体质谱(LA_ICP_MS) [J].地学前缘,8(4): 434_440 .
黄建国.1998. 中国三叠纪钾盐沉积——以四川为例[J].岩相古地理,18(4):23_43.
李亚文,蔡克勤,韩蔚田. 1998. 四川盆地三叠系蒸发岩的变质作用与富钾卤水的成因[J ]. 现代地质,12(2): 222_228.
林耀庭.1994.论四川盆地海相三叠系含钾性及找钾方向[J]. 四川地质学报,14(2):111_12 0.
林耀庭.1995.论四川盆地三叠系盐类变质作用及找钾方向[J]. 化工矿产地质,17(2):93_1 02.
林耀庭,许祖霖.2009. 论盐类保存条件研究对四川盆地三叠系找钾工作的重要性[J]. 盐 湖研究,17(1):6_12.
林耀庭,何金权,王田丁,叶茂才. 2002a. 四川盆地中三叠统成都盐盆富钾卤水地球化学 特征及其勘查开发前景研究[J]. 化工矿产地质,24(2):72_84.
林耀庭,郑茂全. 2002b. 论四川盆地三叠系盐类热融水溶变质对找钾方向的控制[J]. 盐 湖研究,10(1):8_17.
刘兴起,倪培,董海良,王天刚.2007.内陆盐湖石盐流体包裹体均一温度指示意义的现代 过程研究[J]. 岩石学报,23(1): 113_116.
陆松年,李怀坤,陈志宏,于海峰,金巍,郭坤一. 2004. 新元古时期中国古大陆与罗迪尼 亚超大陆的关系[J]. 地学前缘,11(2): 515_523.
孟凡巍,刘成林,倪培. 2012. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海 相成钾探讨[J]. 微体古生物学报. 29(1): 62_69.
宋鹤彬,宋正平,肖章棋. 1988. 川东北宣汉地区川2 井富钾卤水稳定同位素地球化学特征 及找钾意义[J]. 中国地质科学院矿床地质研究所所刊, 1: 51_67.
汪明泉,赵艳军,刘成林,丁婷. 2015. 四川盆地东部三叠系嘉陵江组成盐期浓缩海水古温 度及其意义[J]. 岩石学报,31(9):2745_2750.
杨吉根.1994. 我国东南四省五个岩盐矿床石盐中流体包裹体的初步研究[J].盐湖研究 ,2(3): 1_9.
袁见齐,蔡克勤,肖荣阁,陈卉泉.1991.云南勐野井钾盐矿床石盐中包裹体特征及其成因 的讨论[J]. 地球科学,16(2):137_142.
张岳桥,董树文,李建华,施炜. 2011. 中生代多向挤压构造作用与四川盆地的形成和改造 [J].中国地质,38(2):233_250.
赵艳军, 刘成林, 张华, LI Z Q, 丁婷, 汪明泉. 2015. 古盐湖卤水温度对钾盐沉积 的控制作用探讨[J]. 岩石学报, 31(9): 2751_2756.