2023年8月	矿	床	地	质
August, 2023	MIN	ERAL	DEPC	SITS

文章编号: 0258-7106 (2023) 04-0693-20

新疆大红柳滩稀有金属矿田花岗岩与伟晶岩成因 关系探讨^{*}

何 蕾^{1,2},高景刚^{1,2**},王登红³,梁 婷^{1,2},凤永刚^{1,2},黄 凡^{2,3**},谭细娟^{1,2},岑炬标^{1,2} (1长安大学地球科学与资源学院,陕西西安 710054;2西安市关键金属成矿与高效利用重点实验室,陕西西安 710054; 3中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室,北京 100037)

摘 要 西昆仑大红柳滩稀有金属矿田出露大面积的复式花岗岩体和数千条花岗伟晶岩脉,含锂和富锂 伟晶岩脉分布在巴颜喀拉山群、石英闪长岩、黑云母二长花岗岩的内部以及二云母二长花岗岩和石榴子石电 气石二云母二长花岗岩的边缘或者外围,围绕复式岩体存在明显的矿物组合分带特征。富锂伟晶岩与二云母 二长花岗岩、石榴子石电气石二云母二长花岗岩的空间关系更加密切。野外地质特征和精确的年代学数据显 示:复式岩体主要由先后侵入的片麻状石英闪长岩、黑云母二长花岗岩和二云母二长花岗岩组成,锆石 U-Pb 年龄分别为 214.7~213.7 Ma, 214~213 Ma 和 209.6~208.8 Ma; 花岗伟晶岩的锡石、锆石、独居石、铌钽矿物 U-Pb 年龄分别为 223~207.4 Ma,显示花岗伟晶岩与复式岩体具有密切的时空关系。石英闪长岩、黑云母二长花岗岩 和二云母二长花岗岩具有不同的岩石地球化学、 $\varepsilon_{\rm Ht}(t)$ 值、 $\varepsilon_{\rm Nd}(t)$ 值和 $\delta^7 Li$ 同位素特征,显示三者来源于不同的岩 浆源区。二云母二长花岗和石榴子石电气石二云母二长花岗岩具有相似的 ε_н(t)值(-9.49~-4.47)和 ε_{νa}(t) 值(-8.64~-7.81),表明其源于下地壳物质的部分熔融;Nb/Ta比值分别为 20.87~23.62 和 4.41~22.90,反映岩浆 演化过程存在流体作用;较低的 CaO/Na,O(平均值 0.34)、Rb/Sr(平均值 2.04)和 Rb/Ba(平均值 0.86)指示来源 于贫黏土的变质页岩;与 90 号脉富锂伟晶岩,509 道班西(白龙山)贫锂伟晶岩具有一致的δ⁷Li值,指示来源于 相同的源区;近矿围岩较高的δ⁷Li值,可能是锂同位素扩散导致。509 道班西(白龙山)富锂伟晶岩的δ⁷Li值 明显低于区内花岗岩、贫锂伟晶岩和90号脉富锂伟晶岩,可能与岩浆演化过程中熔体-流体分离、侵入后的冷 却速率、扩散驱动等因素有关,岩浆演化晚期熔体-流体分离过程中 P、F 等挥发分元素对 90 号富锂伟晶岩脉的 形成起关键作用。

关键词 地球化学;花岗岩;伟晶岩;Li同位素;成矿模式;大红柳滩 中图分类号:P588.1;P597.3 **文献标志码**;A

Discussion on genetic relationship between granite and pegmatite in Dahongliutan rare metal ore field, Xinjiang

HE Lei^{1,2}, GAO JingGang^{1,2}, WANG DengHong³, LIANG Ting^{1,2}, FENG YongGang^{1,2}, HUANG Fan^{2,3}, TAN XiJuan^{1,2} and CEN JuBiao^{1,2}

(1 School of Earth Science and Resources, Chang'an University, Xi'an 710054, Shaanxi, China; 2 Xi'an Key Laboratory for Mineralization and Efficient Utilization of Critical Metals, Xi'an 710054, Shaanxi, China; 3 Key Laboratory of Mineralization and Resource Evaluation, Ministry of Natural Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

^{*} 本文得到国家重点研发计划项目(编号:2021YFC2901902、2017YFC0602701)、西安市关键金属成矿与高效利用重点实验室(编号: 300102272502、300102272504)和陕西省自然科学基金(编号:2021JM-162)共同资助

第一作者简介 何 蕾,女,1990年生,博士研究生,矿物学、岩石学、矿床学专业。Email:hejay2u@sina.com

^{**} 通讯作者 高景刚,男,1974年生,博士,副教授,从事矿床学、矿产勘查的教学和科研工作。Email:jggao@chd.edu.cn

^{**}通讯作者 黄 凡,男,1983年生,研究员,主要从事区域成矿规律与成矿预测研究工作。Email:hfhymn@163.com 收稿日期 2022-04-27;改回日期 2023-03-03。赵海杰编辑。

Abstract

The Dahongliutan rare metal ore field in western Kunlun exposes a large area of composite granite body and thousands of granite pegmatite dikes. The Li-poor and Li-rich pegmatite dikes are distributed in the Bayankalashan Group, quartz diorite, biotite monzogranite, as well as the periphery of the two-mica monzogranite and garnet tourmaline two-mica monzogranite (within 2 km). There are obvious mineral assemblage zoning around the composite granite body. The rare metal mineralized pegmatite is more closely related to the two-mica monzogranite and garnet tourmaline two-mica monzogranite in spatial relationship. The field geological characteristics and precise chronological data show that the composite granite body is mainly composed of gneissic quartz diorite, biotite monzogranite and two-mica monzogranite, formed during 214.7~213.7 Ma, 214~213 Ma and 209.6~208.8 Ma respectively. Granite pegmatites mainly formed during 223~207.4 Ma (U-Pb dating of cassiterite, zircon, monazite, and niobium tantalum minerals), which show a close spatial-temporal relationship. Quartz diorite, biotite monzogranite and two-mica monzogranite have different lithogeochemical characteristics, $\varepsilon_{Hf}(t)$, $\varepsilon_{Nd}(t)$, and δ^7 Li ratio, which mean that they originated from different magma sources. Two-mica monzogranite and garnet tourmaline two-mica monzogranite have similar $\varepsilon_{\text{Hf}}(t)$ (-9.49~-4.47) and $\varepsilon_{\text{Nd}}(t)$ (-8.64~-7.81) values, which indicates that they derived from partial melting of the lower crust. Nb/Ta ratios are 20.87~23.62 and 4.41~22.90 respectively, displaying evidence of interactions with fluids. The lower ratios of CaO/Na₂O (average of 0.34), Rb/Sr (average of 2.04) and Rb/Ba (average of 0.86) indicate that they derived from clay-poor meta-shale. It is consistent with No. 90 Li-rich pegmatite vein and western 509 Daoban (Bailongshan) Li-poor pegmatite 87Li ratio, indicating that they originated from the same source area. High ratio of $\delta^7 Li$ from country rock near the ore body may be caused by lithium isotope diffusion. The ratio of δ^7 Li from western 509 Daoban (Bailongshan) Li-rich pegmatite is obviously lower than that of granite, Li-poor pegmatite and No. 90 Li-rich pegmatite vein, which may be related to factors such as melt fluid separation, cooling rate after magma emplacement and diffusion driven during magma evolution. In the process of melt fluid separation in late magma evolution, volatile elements such as P and F play a key role in the formation of No. 90 Li-rich pegmatite vein.

Key words: geochemistry, granite, pegmatite, Li isotope, metallogenic model, Dahongliutan

稀有金属花岗伟晶岩富含Li、Cs、Be、Nb、Ta、Sn 等稀有金属元素,是玻璃、陶瓷和电子工业应用的重 要来源(London, 2018),按伟晶岩的矿物组合和地球 化学特征将其分为锂-铯-钽(LCT)型和铌-钇-氟 (NYF)型2类(Černý et al., 2005),在成因上存在结 晶分异和地壳深熔的争论(Černý et al., 1992; Shaw et al., 2016; 张辉等, 2019)。以往地质资料显示, 产 于造山带的花岗伟晶岩常与侵入的花岗岩密切共 生,大多数LCT型花岗伟晶岩被解释为花岗岩结晶 分异的产物(London, 1990; 2008; 2018)。花岗伟晶 岩的矿物组合、内部结构和空间分带都源于熔体在 过冷条件下((200±50)℃)的快速结晶,其成矿过程 是大型花岗岩深成岩的结晶分异(London, 2018)。 造山带内花岗伟晶岩与周围的花岗岩之间在时间或 者物源的解耦关系(Martins et al., 2012; Deveaud, 2015;张辉等,2019),是确定花岗伟晶岩和花岗岩的 成因联系,以及稀有金属花岗伟晶岩成岩成矿的关键(高景刚等,2023a;2023b)。

西昆仑造山带具有演化历史漫长、构造复杂的 特点(姜春发等,1992)。伴随麻扎-康西瓦缝合带的 闭合,沿造山带形成规模巨大的三叠纪花岗岩带 (Zhang et al., 2016),以及与其伴生的数万条伟晶岩 脉(邹天人等,2006)。近年,在大红柳滩矿田东段 509道班西一带新发现505号、507号、509号等大型 锂辉石伟晶岩脉群(王核等,2017;李侃等,2019),显 示该区具有重要的Li-Be成矿潜力。科研人员在矿 集区开展了花岗岩的年代学、地球化学(乔耿彪等, 2015;魏小鹏等,2017;2018;Ding et al.,2019;丁坤 等,2020;Zhou et al.,2021)、Li同位素特征(丁坤等, 2020;Fan et al.,2020;Wang et al.,2018;李侃等, 2019;Wang et al.,2020;Yan et al.,2018;李侃等, 作,认为区内花岗伟晶岩与岩体有关。基于花岗伟 晶岩与复式岩体的时空关系,Yan等(2018)提出大红 柳滩稀有金属伟晶岩与三叠纪大红柳滩S型花岗岩 有遗传关联,白龙山伟晶岩可能是由花岗闪长岩高 度分异的花岗岩岩浆演化而来(Wang et al., 2020), 结合地球化学提出大红柳滩地区的二云母二长花岗 岩与锂铍伟晶岩源于黑云母花岗岩的结晶分异(唐 俊林等,2022)等多种认识。根据白龙山地区富锂伟 晶岩和贫锂伟晶岩的全岩和单矿物的锂同位素特 征,研究认为存在两种类型伟晶岩的形成机制(Fan et al., 2020; Zhou et al., 2021)。然而, 大红柳滩复式 岩体的二云母二长花岗岩和黑云母二长花岗岩的锆 石Hf同位素组成不同,其中黑云母二长花岗岩的 ε_{нf}(t)值为-1.86~+2.16(丁坤等,2020),二云母二长 花岗岩的 ε_{нf}(t)值为-9.49~-4.47(魏小鹏等, 2017); 全岩REE配分模式也显著不同,其中黑云母二长花 岗岩具有显著负Eu异常(丁坤等,2020),而二云母 二长花岗岩没有Eu异常(魏小鹏等,2017),显示二 云母二长花岗岩不可能是黑云母二长花岗岩岩浆演 化的产物。

野外工作发现在大红柳滩复式岩体的侵末端发 育石榴子石电气石二云母二长花岗岩,其边缘有花 岗伟晶岩异离体,稀有金属矿化伟晶岩分布在外围 1.5 km左右范围内,两者之间空间关系更加密切。 为进一步分析花岗伟晶岩与花岗岩的成因关系提供 了新的条件,本文在大红柳滩矿田围绕复式岩体的 岩性组成、接触关系、伟晶岩分布等开展了详细的野 外地质调查和样品采集工作,补充测试了石榴子石 电气石二云母二长花岗岩、围岩和90号脉伟晶岩的 地球化学、年代学和Li同位素数据,并开展综合研究 工作,进一步探讨大红柳滩矿田花岗岩与伟晶岩的 成因关系,为区内稀有金属矿化伟晶岩成矿规律及 找矿方向提供依据。

1 地质概况

西昆仑造山带位于塔里木板块和喀喇昆仑-羌 塘地块之间,西侧以塔什库尔干断裂为界与帕米尔 高原毗邻,东侧以阿尔金断裂为界,整体呈北西-南 东走向的巨型反"S"状展布。横贯造山带的3条缝 合带(F1奥依塔格-库地-其曼于特缝合带、F2布伦 口-麻扎-康西瓦缝合带和F3红山湖-乔尔天山缝合 带)将西昆仑造山带划分为西昆仑北带、西昆仑中 带、西昆仑南带3个构造单元(姜春发等,1992)。在 漫长的演化过程中,不同构造单元发育了时代各异、 区域差异显著的地层系统,广泛分布的早古生代— 新生代花岗岩占据了西昆仑露头岩石的30%左右, 岩体的展布与区域构造线是一致的(图1)。

西昆仑伟晶岩成矿带呈北西-南东向带状展布, 西起喀什以西的木吉,向南东经布伦口至塔什库尔 干、叶城县南的麻扎,再向东到康西瓦、大红柳滩一 带,长800 km,宽30~80 km,已发现的伟晶岩脉数万 条,其中数百条伟晶岩具有不同程度的稀有金属矿 化或白云母矿化,形成了木吉-布伦口、麻扎-黑恰、康 西瓦-大红柳滩等重要的伟晶岩密集区(邹天人等, 2006)。

2 大红柳滩矿田岩体与伟晶岩特征

2.1 岩体组成与分布

大红柳滩矿田位于三十里营房至奇台达板构造 岩浆带中部(图1),复式岩体侵位于古元古界康西瓦 群、二叠系黄羊岭群和三叠系巴颜喀拉山群,根据岩 性和接触关系可以划分为片麻状石英闪长岩、黑云 母二长花岗岩和二云母二长花岗岩,在东段侵末端 过渡为石榴子石电气石二云母、长花岗岩(图2a)。

石英闪长岩规模小,呈岩株状侵入巴颜喀拉山 群,在新藏公路459 km 里程碑处的南沟一带被黑云 母二长花岗岩侵入(图2b),在509道班西侧的俘虏 沟一带出露中细粒石英闪长岩(李侃等,2019)。石 英闪长岩呈灰色,中细粒,矿物组成有斜长石 (80%±)、石英(15%±)、黑云母(3%±)和少量角闪石、 白云母。内部发育大量沿北西向裂隙侵入的花岗伟 晶岩脉(谭克彬等,2021)。黑云母二长花岗岩规模 最大,主体分布在阿克沙依南侧,向西延伸到康西 瓦-三十里营房,是大红柳滩岩体的重要组成部分, 在矿田内形态为不规则的分叉状,侵位于巴颜喀拉 山群、黄羊岭群和康西瓦群,接触界线清晰(图3a)。 岩体内部有较多的片岩、片麻岩和石英闪长岩捕虏 体,在东段侵末端混杂较多围岩,局部发生白云母 化。黑云母二长花岗岩呈灰白色,中细粒结构,主要 由石英(35%±)、斜长石(25%±)、正长石(25%±)和黑 云母(15%±)组成。二云母二长花岗岩是大红柳滩 岩体的重要组成,主要由中红柳滩南片麻状二云母 二长花岗岩和大红柳滩石榴子石电气石二云母二长 花岗岩2个岩体组成。前者位于中红柳滩南部,岩

图 1 新疆西昆仑造山带地质简图(据Li et al., 2017; Yan et al., 2018) Fig. 1 Geological map of the western Kunlun orogenic belt, Xinjiang (after Li et al., 2017; Yan et al., 2018)

体有分支,形态复杂,含较多围岩捕虏体,岩体西端侵 入黑云母二长花岗岩(图3b);后者呈带状侵入三叠系 巴颜喀拉山群和黑云母二长花岗岩内(图3c)。石榴 子石电气石二云母二长花岗岩(图3d)呈灰色,具有不 等粒他形粒状结构,块状构造,主要组成矿物为石英 (40%~45%)、斜长石(30%~35%)、正长石(15%~ 20%)、其次为白云母(5%~8%)、黑云母(3%~5%)、石 榴子石(2%~5%)和电气石(3%~5%),主要副矿物为 磷灰石、锆石等。石榴子石发生碎裂变形(图3e),石 英交代长石形成交代似文象结构(图3f)。从矿物组 成及相互之间的关系来看,岩体为岩浆结晶形成。

2.2 伟晶岩分布与特征

大红柳滩矿田伟晶岩非常发育,目前发现有7000 多条,长度一般在几m~250m之间,个别大于250m; 厚度一般在几m~几十m,个别可达100m。空间上分 布不均匀,主要分布在黑云母二长花岗岩、二云母二 长花岗岩和石榴子石电气石二云母二长花岗岩的内 外接触带及其围岩地层中,脉体成群成带出现,呈透 镜状、串珠状、板状产出。根据伟晶岩矿物组合划分 为微斜长石伟晶岩(微斜长石、石英和白云母)、钠长 石伟晶岩(白云母、绿柱石、石英和白云母)、钠长 石伟晶岩(白云母、绿柱石、石英、钠长石和微斜长石) 和钠长石-锂辉石伟晶岩(锂辉石、钠长石、石英和白云 母)3类。近岩体处脉体密集,远离岩体处则稀疏,在 石榴子石电气石二云母二长花岗岩中常见异离体状 伟晶岩,部分伟晶岩产于混合岩化的接触带内(图 2c),表现出与区内晚三叠世岩体密切的空间关系。

在空间上,黑云母二长花岗岩和二云母二长花 岗岩分别控制了阿克沙依和中红柳滩-大红柳滩一

- 图2 大红柳滩矿田地质简图及伟晶岩分布图(a)、黑云母二长花岗岩侵入石英闪长岩内(b)、石榴子石电气石二云母二长花 岗岩边缘伟晶岩异离体(c)和简单伟晶岩、富锂伟晶岩与石榴子石电气石二云母二长花岗岩空间关系(d)(据新疆地质局第二 地质大队,1981修改)
 - Fig. 2 Geological map and pegmatites distribution of the Dahongliutan ore field(a), biotite monzogranite intrudes into quartz diorite(b), pegmatite schlieren in the margin of garnet tourmaline two-mica monzogranite(c), spatial relationship of simple pegmatite, Li-rich pegmatite and garnet tourmaline two-mica monzogranite (d) (modified from No.2 Geological Brigade of Xinjiang Geological Bureau, 1981)

带的伟晶岩分布。阿克沙依一带伟晶岩主要分布在 黑云母二长花岗岩体北侧及其东延伸方向,自西向 东伟晶岩具有简单伟晶岩、白云母伟晶岩和富锂伟 晶岩脉变化趋势,已发现的24条富锂伟晶岩脉分布 在新藏公路459 km里程碑东沟一带,一般规模较 小,长几m到200 m,宽1~20 m,形状有板状、不规则

图3 大红柳滩矿田花岗岩野外及镜下照片

a. 黑云母二长花岗岩与石英片岩的接触部位;b. 细粒二云母二长花岗岩侵入黑云母二长花岗岩;c. 石榴子石电气石二云母二长花岗岩与黑云母石 英片岩接触关系;d. 石榴子石电气石二云母二长花岗岩;e. 碎裂石榴子石与黑云母(单偏光);f. 石英交代长石形成似文象结构(正交偏光) Bt-黑云母;Gr-石榴子石;Mu-白云母;Or-正长石;Q-石英

Fig. 3 Field photos and photomicrographs of granite in the Dahongliutan ore field

a. Contact relationship between biotite monzogranite and quartz schist; b. Fine grained two-mica monzogranite intrudes biotite monzogranite; c. Contact relationship of garnet tourmaline two-mica monzogranite and biotite-quartz schist; d. Garnet tourmaline two-mica monzogranite; e. Cataclastic garnet and biotite (under plane-polarized light); f. Feldspar is metasomatized by quartz to form graphic texture (under cross-polarized light)
 Bt—Biotite; Gr—Garnet; Mu—Muscovite; Or—Orthoclase; Q—Quartz

的葫芦状和透镜状。中红柳滩-大红柳滩伟晶岩密 集区围绕二云母二长花岗岩和石榴子石电气石二云 母二长花岗岩体分布,自西向东具有简单伟晶岩、白 云母伟晶岩和富锂伟晶岩脉变化趋势。在二云母二 长花岗岩东侧发现多条含绿柱石的白云母伟晶岩 脉,规模十几m到425m,宽1~18m,形状有脉状、板 状和小串珠状。在大红柳滩南石榴子石电气石二云 母二长花岗岩的倾末端外围发现112号、90号、91 号、93号脉群富锂伟晶岩脉(图2d)。近年来,在新 藏公路509道班西的503 km,507 km,509 km里程碑 处的南大沟内也发现新的含矿脉群(表1),显示二云 母二长花岗岩和石榴子石电气石二云母二长花岗岩 对区内富锂伟晶岩的重要作用。

3 样品采集与分析方法

沿新藏公路两侧的阿克沙依至大红柳滩一带分 别采集石榴子石电气石二云母二长花岗岩(D009和 D028)、简单伟晶岩、富锂伟晶岩和围岩等样品。挑 选错石的花岗岩样品采集5~10 kg,主、微量元素测 试和Li同位素采用全岩分析法。为了保证伟晶岩样 品的均一性,单个伟晶岩样品在1~2 kg之间。

岩石地球化学分析在长安大学实验室内测试,首 先将岩石样品破碎,研磨(200目)制成分析样品。称 取样品 0.5 g、助溶剂($Li_2B_4O_7$)5.0 g和坩埚保护剂 (NH₄NO₃)0.3 g混匀,加入1~2滴LiBr后,于加热炉中 熔融处理,冷却后采用XRF进行主量元素分析,使用 日本岛津公司的顺序扫描LAB CENTER XRF-1800 型X射线荧光光谱仪,分析精度高于1%。微量元素 分析样品消解方法步骤如下:即准确称取粒径小于 75 µm样品 50.00 mg (± 0.50 mg)于15 mL特氟龙消解 罐,加入1.0 mL HF和 0.5 mL HNO₃,摇匀,140°C电热 板上敞口蒸至湿干;再加入 0.5 mL HF和 1.0 mL HNO₃,密闭,185°C烘箱48 h。取出冷却的样品,卸掉 缸套,开盖于140°C电热板蒸干,加入1.0 mL HNO₃, 蒸至湿干;加入 2.0 mL 40% HNO₃ (v/v),盖盖装缸套, 拧紧,放入135℃烘箱6h,放置过夜;将样品转移 至50mL一次性聚乙烯塑料瓶,用2%HNO₃(v/v)定重 至(50±0.5)g,采用ICP-MS对样品中微量元素进行分 析,使用仪器为美国热电公司X-7型电感耦合等离子 体质谱分析仪,分析精度优于5%(Tan et al., 2020)。

锆石 U-Pb 定年分析在长安大学成矿作用及其 动力学实验室,通过 Analyte Excite 193 nm 气态准分 子激光剥蚀系统与安捷伦 7700E型电感耦合等离子 体质谱(ICP-MS)分析仪联机进行。所测元素激光 斑束直径为35 μm,频率为5 Hz,剥蚀物气溶胶由氦 气送入 ICP-MS 完成测试。测试过程中以标准锆石 91500作为外标,校正仪器质量歧视与元素分馏。数 据处理采用 ICP-MS DataCal 软件,年龄计算采用 Isoplot(3.70版)软件(Ludwig, 2003)。

Li同位素的化学分离和测试在北京科荟测试技 术有限公司实验室完成。利用Neptune Plus多接收 器电感耦合等离子体质谱测定锂同位素比值,使用 标准-样品交叉法(SSB)校正仪器的质量分馏。在测 试样品之前,使用L-SVEC 100 ng/mL标准溶液对仪 器进行参数优化,包括等离子体部分(矩管位置和载 气流速等参数)和离子透镜参数,以达到最大灵敏 度。将化学分离后的样品引入质谱,使得⁷Li的信号 强度为3V左右(溶液中锂浓度约为100 ng/mL),使 用自由雾化器进样方式。

4 分析结果

4.1 年代学

石榴子石电气石二云母二长花岗岩 D009 和 D028样品的锆石 U-Pb定年分析结果见表2。

	Table 1 Mineralization characteristics of main pegmatites in the Danongliutan and 509 Daobanxi							
位置	伟晶岩编号	形态与规模	结构分带	围岩	矿化规模			
	112号脉	板状,长200m,宽3~8m,产状203°∠77°	石英-微斜长石带、微斜长石带、白云母-		Li-中型			
大红	大红 6条脉组成,3号脉:长216.6 m,平均厚12.98 m,产状 柳滩 290°∠72°		的人们-连杆们市、石夹肉 6条脉组成 3 导脉,长 2166 m 平均厚 12 08 m 产业 石苗 微烈长石带 石苗 白子母带 石苗					
柳滩			钠长石-锂辉石带、石英核	山群	Li-大型			
01日時刊		4条矿脉组成,2号脉:长378.1 m,平均厚20.48 m。产	石英-微斜长石带、石英-白云母带、石英-		口:中亚			
	91 写加柏干	状为287°~317°∠71°~81°	钠长石-锂辉石带、石英核		LI-T空			
	503号脉群	脉状,出露长1200 m,脉宽80± cm,产状200°∠75°	全脉矿化,分带不明显					
509道	507号脉群	单脉宽80± cm,产状200°∠75°	全脉矿化,分带不明显	巴颜喀拉	T: + #I			
班西 509号	500早脉畔	13条含矿脉平行产出,地表长度94.68~902.66 m,单脉	会股矿化 公带不明目	山群	L1-入望			
	コロク ラ 加小中十	宽 2.15~25.86 m	王麻亚记,万重个明亚					

表1 大红柳滩和509道班西主要伟晶岩脉矿化特征

表2 大红柳滩矿田石榴子石电气石二云母二长花岗岩锆石 LA-ICP-MS U-Pb 年代学测试结果

Table 2 Zircon LA-ICP-MS U-Pb isotopic data for garnet tourmaline two-mica monzogranite from the Dahongliutan ore field

अन्तर्ग 🗠	w(B))/10 ⁻⁶		20701 /20601		207 01 /2351 1		206 01 /2381 1			年龄	/Ma		VHz Ter Dis
测点	Th	U	Th/U	²⁰⁷ Pb/ ²⁰⁰ Pb	σ	207 Pb/205U	σ	200Pb/200	σ –	²⁰⁷ Pb/	^{/206} Pb	²⁰⁶ Pb/	²³⁸ U	- 谐和良
							D	009						
1	0/	404	0.23	0.0581	0.0026	0 3806	0.0186	0.0484	0.0013	531.5	08.1	304.7	77	00%
2	205	404	0.23	0.0554	0.0020	0.3690	0.0160	0.0404	0.0013	427.9	90.1	520.0	12.0	9070
2	505	2025	0.997	0.0334	0.0021	0.0457	0.0201	0.0840	0.0025	427.0	69.8	320.0	13.9	9070
3	4	2835	0.001	0.0496	0.0014	0.2267	0.0070	0.0328	0.0007	1/6.0	64.8	207.9	4.2	99%
4	110	234	0.47	0.0659	0.0022	1.1578	0.0421	0.1263	0.0028	1200	70.4	/66.6	16.1	98%
5	12	3970	0.003	0.0514	0.0014	0.2570	0.0074	0.0361	0.0009	257.5	63.0	228.4	5.4	98%
6	114	15272	0.01	0.0774	0.0025	0.3906	0.0152	0.0361	0.0009	1132	31.3	228.8	5.8	62%
7	83	6786	0.01	0.0837	0.0080	0.4206	0.0428	0.0353	0.0010	1287	180.6	223.4	6.2	54%
8	37	2635	0.01	0.0508	0.0017	0.2477	0.0085	0.0349	0.0008	231.6	79.6	221.3	4.8	98%
9	218	1428	0.15	0.0501	0.0019	0.2321	0.0087	0.0333	0.0008	211.2	88.9	211.4	4.8	99%
10	94	8674	0.01	0.0776	0.0035	0.3551	0.0134	0.0337	0.0009	1145	88.9	213.5	5.7	63%
11	4	2951	0.001	0.0495	0.0016	0.2392	0.0082	0.0349	0.0008	172.3	74.1	221.0	4.9	98%
12	12	5107	0.002	0.0486	0.0015	0.2261	0.0071	0.0336	0.0009	127.9	72.2	212.8	5.6	97%
13	65	13584	0.005	0.0510	0.0014	0.2519	0.0076	0.0356	0.0009	239.0	63.0	225.6	5.5	98%
14	253	734	0.34	0.0552	0.0021	0.5810	0.0352	0.0753	0.0033	420.4	87.0	468.2	19.7	99%
15	68	11829	0.006	0.0513	0.0015	0.2627	0.0073	0.0368	0.0008	253.8	66.7	233.0	5.2	98%
16	46	4374	0.010	0.0498	0.0015	0.2539	0.0089	0.0368	0.0010	187.1	65.7	233.1	6.0	98%
17	149	14766	0.010	0.0697	0.0031	0.3641	0.0156	0.0378	0.0009	920.4	88.0	239.0	5.4	72%
18	120	14231	0.008	0.0837	0.0041	0.4412	0.0220	0.0370	0.0009	1284	94.9	239.0	49	57%
10	70	7773	0.000	0.1036	0.00041	0.5757	0.0220	0.0379	0.0017	1204	177.0	239.9	10.3	30%
20	521	1204	0.010	0.1030	0.0099	0.3737	0.0034	0.0389	0.0017	204.5	75.0	240.5	5.6	070/
20	321	1204	0.45	0.0322	0.0018	0.3021	0.0103	0.0415	0.0009	294.5	/3.9	202.4	5.0	9770
21	110	2853	0.04	0.0639	0.0028	0.3841	0.0188	0.0425	0.0011	738.9	86.1	268.5	6.5	/9%
22	99	2547	0.04	0.0588	0.0021	0.4319	0.0283	0.0516	0.0026	566.7	77.8	324.4	16.0	88%
23	422	1410	0.30	0.0534	0.0016	0.4357	0.0188	0.0585	0.0018	346.4	66.7	366.2	10.8	99%
24	310	1211	0.26	0.0560	0.0019	0.5082	0.0287	0.0656	0.0032	453.8	74.1	409.6	19.2	98%
25	242	434	0.56	0.0541	0.0024	0.4938	0.0260	0.0658	0.0023	376.0	69.4	411.0	14.1	99%
26	253	734	0.34	0.0562	0.0021	0.5640	0.0284	0.0721	0.0026	461.2	81.5	448.5	15.7	98%
27	354	787	0.45	0.0686	0.0021	1.2422	0.0498	0.1311	0.0041	887.0	62.7	794.3	23.3	96%
28	45	100	0.45	0.0654	0.0028	1.2199	0.0560	0.1349	0.0032	788.6	88.9	815.7	18.2	99%
29	739	2199	0.34	0.0489	0.0015	0.2258	0.0070	0.0329	0.0006	142.7	70.4	◎ 209.0	4.0	98%
							D	028			8			
1	201	305	0.66	0.1000	0.0030	3.7500	0.1000	0.2700	0.0060	1678 🔨	50.0	1519	30.1	95%
2	389	408	0.95	0.0700	0.0020	1.1100	0.0400	0.1200	0.0030	850.0	60.3	731.0	19.7	96%
3	121	1022	0.12	0.1200	0.0030	4.9400	0.1400	0.3100	0.0070	1883	45.5	1744	34.0	96%
4	216	626	0.35	0.0600	0.0020	0.2600	0.0100	0.0300	0.0010 a	431.5	86.1	215.9	4.7	91%
5	85	290	0.29	0.0600	0.0030	0 4000	0.0200	0.0500	0.0020	483.4	113.0	323 7	95	95%
6	152	568	0.27	0.0600	0.0020	0.5700	0.0200	0.0700	0.0020	546.3	77.8	442.5	10.6	95%
7	37	375	0.10	0.0500	0.0020	0.2800	0.0200	0.0400	0.0010	3723	103.7	236.4	6.2	94%
°	225	258	0.10	0.0500	0.0020	0.2800	0.0200	0.0700	0.0010	600.0	82.4	427.4	10.0	060/
0	50	200	0.07	0.0500	0.0020	0.3000	0.0200	0.0700	0.0020	208.2	87.0	757.7	5.0	000/
9	775	980	0.10	0.0500	0.0020	1.5000	0.0100	0.0400	0.0010	1000	5/.0	233.2	22.0	20/0
10	1/5	889	0.87	0.0700	0.0020	1.5000	0.0500	0.1500	0.0040	1000	50.0	923.7	23.0	99%
11	130	223	0.58	0.0600	0.0030	0.5400	0.0300	0.0700	0.0020	583.4	98.1	412.5	9.8	93%
12	98	877	0.11	0.1200	0.0030	4.8600	0.1600	0.3000	0.0080	1932	53.9	1675	37.3	93%
13	245	433	0.57	0.0500	0.0020	0.3000	0.0100	0.0400	0.0010	387.1	100.0	251.5	6.4	94%
14	386	238	1.62	0.0500	0.0030	0.2900	0.0100	0.0400	0.0010	361.2	118.5	246.6	5.9	95%
15	247	877	0.28	0.0500	0.0020	0.4000	0.0200	0.0500	0.0020	316.7	83.3	341.4	11.2	99%
16	129	501	0.26	0.0500	0.0020	0.2500	0.0100	0.0300	0.0010	283.4	97.2	216.9	5.4	97%
17	139	475	0.29	0.0600	0.0020	0.6400	0.0200	0.0800	0.0020	487.1	77.8	504.4	11.6	99%
18	89	2360	0.04	0.0500	0.0020	0.2500	0.0100	0.0300	0.0010	287.1	70.4	220.9	4.4	97%
19	126	2504	0.05	0.0600	0.0020	0.2700	0.0100	0.0400	0.0010	416.7	77.8	229.8	5.2	93%
20	174	572	0.30	0.0600	0.0020	0.2800	0.0100	0.0400	0.0010	457.5	91.7	225.3	5.2	90%
21	831	1602	0.52	0.0600	0.0020	0.5100	0.0200	0.0700	0.0020	413.0	68.5	421.4	10.1	99%
22	68	302	0.23	0.0500	0.0030	0.3400	0.0200	0.0500	0.0010	339.0	104.6	290.7	8.8	97%
23	201	771	0.26	0.0700	0.0020	1.4500	0.0400	0.1500	0.0030	953.7	56.6	890.9	18.9	97%
24	102	491	0.21	0.0600	0.0030	0.4200	0.0200	0.0500	0.0020	561.2	94.4	331.1	11.2	92%
25	297	771	0.39	0.0500	0.0020	0.4300	0.0200	0.0600	0.0020	394.5	80.6	353.5	10.2	98%

注:比值单位为1。

D009样品中大多数锆石呈自形长柱状,长约80~180 µm,长宽比约为1:1~1:2。锆石 CL 图像(图4a)显示,多数锆石颗粒外部具有窄的增生边,边部具有溶蚀结构,可能发生热液蚀变。但大多数锆石具有继承核,少量锆石整体呈黑色,不具振荡环带。 锆石 LA-ICP-MS 定年方法共获得分析数据29个,谐和度 > 90%的有21个,锆石 w(Th)和w(U)分别为4×10⁻⁶~739×10⁻⁶和100×10⁻⁶~13584×10⁻⁶,Th/U比值变化范围为0.001~0.997,分析点年龄测试结果变化范围为207.9~815.7 Ma。其中,有7个谐和数据点集中在207.9~225.6 Ma,加权平均年龄为(214.6±6.4)Ma, MSWD=2.2 (图4b),谐和年龄为(214.3±4.9) Ma, MSWD=1.7,锆石结晶形态完整,增生边环带清晰,可以代表岩体的结晶年龄。

D028样品中锆石多呈板状晶形和椭圆形,长约 60~120 mm,长宽比约为2:1。在CL图像(图4c)上, 锆石发育岩浆振荡环带,部分锆的边缘具有窄的暗 色增生边,热液交代不显著。锆石大多具有较低的 Th和较高的U含量,w(Th)和w(U)分别为36×10⁻⁶~831×10⁻⁶和223×10⁻⁶~2504×10⁻⁶,Th/U比值变化范围为0.04~1.62。该样品锆石U-Pb年龄变化范围较大且不集中,锆石年龄测试结果变化范围为215.9~1744 Ma,数据直方图(图4d)统计主峰值分布在215.9 Ma和255.2 Ma之间,数据相对分散,且大多数锆石具有继承核。

4.2 主量和微量元素地球化学

大红柳滩矿田石榴子石电气石二云母二长花岗 岩、伟晶岩及近矿围岩样品的主量和微量元素分析 结果(表3)显示:石榴子石电气石二云母二长花岗岩 $w(SiO_2) 变 化于 72.55%~74.72%, w(Al_2O_3) 变 化于$ 14.19%~15.67%;铝饱和指数(A/CNK)变化于1.07~1.35,平均值为1.24; A/NK 值变化于1.28~1.76, $<math>w(K_2O+Na_2O)$ 变化于6.93%~8.60%,表现为高钾钙碱 性过铝质岩石。巴颜喀拉山群石英片岩 $w(SiO_2)$ 变 化于 54.83%~72.01%,具有较高铝($w(Al_2O_3)$ 为 12.65%~17.74%),高钙(w(CaO)变化于1.83%~

图4 锆石的阴极发光图像显示激光剥蚀点(a、c)和年龄分布(b、d)

Fig.4 Cathodoluminescent images to show the laser ablation points (a, c) and U-Pb ages of zircon (b, d)

表3大红柳滩矿田花岗岩、围岩和伟晶岩主量(w(B)/%)和微量元素(w(B)/10⁻⁶)分析结果

Table 3 Major (w(B)/%) and trace element (w(B)/10⁻⁶) compositions of granite, country rock and pegmatite from

the Dahongliutan ore field

加八		巴	颜喀拉山群				石榴子	石电气石二	云母二长	花岗岩		90号周	永锂辉石	伟晶岩	伟晶岩
组介	90-1-14	D026-1.5m	D026-1.8m	FLG-1	FLG-11	D009-2	DHLT-3	DHLT-20	DHLT-21	FLG-7	D07-1	D90-1-3	Pd-90-1	D90-1-9	DHLT-10
SiO ₂	72.01	62.96	66.02	54.83	60.04	74.27	74.72	74.09	73.78	73.41	72.55	74.24	72.40	74.34	71.87
TiO ₂	0.62	0.82	0.72	0.74	1.38	0.03	0.04	0.04	0.08	0.15	0.25	0.01	0.02	0.02	0.01
Al ₂ O ₂	12.65	17.74	15.00	14.74	16.25	15.32	14.19	15.67	15.24	15.40	14.99	16.97	16.56	15.27	14.63
TFe ₂ O ₂ ^T	4.90	6.06	5.76	6.37	9.22	0.59	0.59	0.92	1.05	1.19	1.55	0.19	1.85	0.56	0.10
MnO	0.10	0.06	0.07	0.10	0.17	0.04	0.03	0.08	0.04	0.10	0.04	0.04	0.14	0.07	0.02
ΜσΟ	1 59	2.37	2.17	4 03	1.80	0.11	0.09	0.18	0.22	0.34	0.37	0.01	0.03	0.09	0.01
CaO	1.93	2.37	1.83	12 44	4 37	0.89	1.16	0.89	0.88	1 47	0.89	0.16	0.36	0.88	0.08
Na O	3.48	0.95	2.97	1 30	3.09	3 54	3 24	3.14	2.84	2.20	2.96	5.87	5 5 5	4 10	2 37
K O	1.58	1.16	2.57	3.02	2.02	4 73	5.36	4.58	5 20	1 73	5 30	0.87	2.06	4.10	0.87
R ₂ O	0.12	1.10	0.16	0.17	0.40	4.75	0.02	4.56	0.25	0.09	0.26	1.25	0.26	4.51	0.00
1 ₂ 05 成生量	0.15	2.50	1.55	1 1 2	0.40	0.15	0.61	0.17	0.25	0.00	0.20	0.60	1.46	0.10	0.09
 所入里	0.87	2.50	09.79	08.02	100.22	0.23	100.05	100.18	100.11	0.90	100.00	100.21	1.40	100.32	0.32
运 /H 1:	99.80 70.56	99.20 761.62	90.70	96.92	71.60	99.92	0.88	11.24	22.14	16.74	100.09	2860	202.02	100.52	99.57
LI	2.20	/01.05	2 25	2.04	2.64	5 72	9.00	11.54	4.74	8 20	5.09	176.95	203.03	6 47	0.39
Be	2.28	4.03	2.55	2.94	2.04	5.75	4.59	4.83	4./4	8.20	5.08	1/0.85	155.10	0.47	0.72
KD	92.99	109.00	317.03	204.35	1/3.24	1/2.50	232.20	200.63	189.55	192.31	301.13	12 49	532.55	181.24	250.88
Sr	244.91	188.02	115.68	2/9.21	279.83	55.60	113.95	59.93	80.92	1/4./8	83.01	12.48	60.03	35.08	67.62
Y	24.44	20.41	13.96	46.28	32.71	10.07	19.12	11.52	10.44	24.86	8.35	0.21	1.27	/./1	1.23
Zr	199.36	185.15	87.18	290.93	165.08	33.55	57.08	35.10	38.38	22.22	123.53	24.12	15.28	35.//	19.58
ND	9.57	31.42	0.00	31.55	15.22	4.58	14.25	0.12	10.97	/.96	15.08	/3.28	106.32	4.41	0.20
Cs	10.37	/1.4/	267.00	26.52	9.41	3.28	16.89	2.97	5.13	13.45	19.86	53.72	64.25	1.30	11.00
Ва	269.33	266.53	163.89	479.79	437.69	145.13	251.75	166.77	261.28	521.02	269.48	3.45	35.52	35.95	99.95
La	31.53	29.72	18.59	48.22	45.17	5.23	12.60	5.30	5.85	14.15	30.72	0.03	1.20	3.34	0.20
Ce	63.81	67.87	37.58	98.97	89.79	10.85	25.82	11.24	12.53	39.44	71.42	0.04	1.50	8.11	0.53
Pr	7.52	6.66	4.30	11.52	10.88	1.19	2.87	1.23	1.39	3.40	7.74	-	0.16	0.79	0.03
Nd	28.31	24.47	17.14	42.21	36.83	4.20	10.89	4.32	5.29	12.38	29.46	0.02	0.64	2.93	0.10
Sm	5.80	4.11	3.30	8.96	7.18	1.20	3.30	1.29	1.59	3.03	6.50	a Co	0.13	1.11	0.03
Eu	1.19	0.97	0.66	1.86	1.54	0.28	0.46	0.38	0.52	0.89	0.71	·O-	0.06	0.14	0.14
Gd	4.91	3.78	3.01	9.51	7.60	1.40	3.59	1.45	1.78	3.03	5.15	0.01	0.20	1.15	0.11
Tb	0.71	0.56	0.47	1.49	1.05	0.30	0.57	0.31	0.39	0.54	0.60	-	0.02	0.24	0.03
Dy	4.15	3.41	2.44	8.84	5.83	1.87	3.43	2.09	2.26	4.00	2.22	0.01	0.14	1.50	0.20
Но	0.78	0.70	0.44	1.81	1.14	0.27	0.61	0.40	0.38	1.00	0.31	-	0.03	0.22	0.03
Er	2.36	2.05	1.47	5.32	3.45	0.68	1.84	1.14	0.95	3.35	0.79	-	0.07	0.49	0.12
Tm	0.30	0.34	0.22	0.76	0.48	0.09	0.28	0.14	0.12	0.53	0.09	-	0.01	0.09	0.02
Yb	2.26	2.18	1.22	4.86	3.22	0.54	1.85	0.91	0.70	3.62	0.54	-	0.04	0.50	0.15
Lu	0.34	0.37	0.21	0.66	0.50	0.06	0.27	0.12	0.08	0.49	0.08	0.01	0.01	0.05	0.02
Hf	4.95	4.40	2.35	7.09	4.35	1.06	2.80	1.26	1.26	0.76	3.85	1.62	0.60	1.42	0.54
Та	0.63	4.87	0.43	1.97	1.15	0.20	3.23	0.53	1.22	1.59	1.82	94.53	26.82	0.33	0.02
Pb	25.60	8.73	12.89	24.94	31.73	46.74	52.37	70.38	56.87	50.11	35.03	12.92	24.95	50.54	79.04
Th	9.50	9.65	5.60	12.65	15.70	1.94	9.22	2.13	2.13	11.64	17.09	0.34	0.09	1.90	0.07
U	2.79	3.48	1.40	4.05	4.20	2.39	3.73	2.95	2.54	2.30	3.94	3.37	2.44	2.12	0.36
ΣREE	153.97	147.19	91.05	244.99	214.66	28.16	68.38	30.32	33.83	89.85	156.33	0.11	4.21	20.66	1.71
LREE/HREE	8.74	9.99	8.60	6.37	8.22	4.40	4.50	3.62	4.08	4.43	14.98	4.29	7.10	3.87	1.51
La_N/Yb_N	10.01	9.78	10.93	7.12	10.06	6.95	4.89	4.18	5.99	2.80	40.81	-	21.52	4.79	0.96
δEu	0.66	0.74	0.63	0.61	0.63	0.66	0.41	0.85	0.94	0.89	0.36	0.01	1.13	0.38	6.60
δCe	0.98	1.13	0.99	1.00	0.96	1.02	1.01	1.04	1.04	1.35	1.11	1.03	0.73	1.18	1.49
K ₂ O+Na ₂ O	5.06	2.11	5.50	4.32	5.91	8.27	8.60	7.72	8.13	6.93	8.35	6.74	7.61	8.41	12.24
A/CNK	1.16	2.27	1.37	0.53	1.01	1.22	1.07	1.33	1.27	1.35	1.22	1.56	1.38	1.17	0.99
Nb/Ta	15.19	6.45	14.09	16.02	13.23	22.90	4.41	11.55	8.99	5.01	8.29	0.78	3.96	13.36	10.00
Zr/Hf	40.27	42.08	37.10	41.03	37.95	31.65	20.39	27.86	30.46	29.24	32.09	14.89	25.47	25.19	36.26
Y/Ho	31.33	29.16	31.73	25.57	28.69	37.30	31.34	28.80	27.47	24.86	26.94	-	42.33	35.05	41.00

注:"-"低于检测线;比值单位为1。

12.44%)和较高的磷(w(P₂O₅)变化于0.13%~1.84%)。 4件伟晶岩样品的LOI值变化于0.32%~1.46%,主量 元素质量分数总和变化于99.37%~100.8%之间,富 锂伟晶岩较贫锂伟晶岩有相对高的SiO₂、Al₂O₃、 CaO、Na₂O和P₂O₅质量分数。

石榴子石电气石二云母二长花岗岩的轻稀土元 素略富集,La_N/Yb_N比值主要变化在2.80~6.95之间 (D07-1为40.81),轻重稀土元素分馏不显著,δEu铕 异常变化大(0.36~0.94)(图 5a), δCe为1.01~1.35, 有 2个样品(D07-1和FLG-7)有明显的Ce正异常。稀 土元素总质量分数为28.16×10⁻⁶~156.33×10⁻⁶,平均 为67.81×10⁻⁶,低于下地壳(Rudnick et al., 2003)。富 集大离子亲石元素(K、Rb、Th),亏损Ba、Nb、Ta、Zr、 P、Ti等元素(图 5b), Y/Ho比值变化于 24.86~37.30。 巴颜喀拉山群石英片岩稀土元素总质量分数为 91.05×10⁻⁶~244.99×10⁻⁶,高于石榴子石电气石二云 母二长花岗岩,相对富集轻稀土元素,重稀土元素亏 损(图 5a)。富集大离子亲石元素 Rb、K、Th,亏损 Nb、Ta、Zr、Ti等高场强元素,略富集P(图5b),Y/Ho 比值为25.57~31.73。4件伟晶岩样品的分析结果显 示(表3),D90-1-9含锂辉石伟晶岩的稀土元素总质 量分数为20.65×10⁻⁶,其他样品稀土元素总质量分数 极低(0.12×10-6~4.20×10-6), D90-1-3 钠长石伟晶岩 大部分元素低于检测线,3件样品的球粒陨石标准化 配分曲线变化很大(图 5a)。

4.3 Li同位素

文章补充测试了石榴子石电气石二云母二长花 岗岩和近脉围岩的全岩锂同位素,Li同位素分析的 结果显示(表5):石榴子石电气石二云母二长花岗岩的δ⁷Li变化范围为3.29‰~4.10‰,平均3.70‰。90-1号矿脉围岩巴颜喀拉山群的石英片岩中δ⁷Li变化范围为-0.57‰~5.48‰,平均3.40‰。

5 花岗岩与伟晶岩成因关系讨论

5.1 形成时代

大红柳滩矿田岩体和伟晶岩一系列精确年代学 数据(表4)显示这些岩体形成于晚三叠世:大红柳滩 石英闪长岩形成于 214.7~213.7 Ma (魏小鹏等, 2018; Zhou et al., 2021), 与区域上黑云母二长花岗 岩的2件样品的锆石U-Pb年龄有很好的一致性,年 龄数据集中在214~213 Ma(Ding et al., 2019; 丁坤 等,2020),509 道班西的花岗闪长岩锆石年龄为 212.3 Ma(Wang et al., 2020)。二云母二长花岗岩在 大红柳滩地区可以分为2个岩体,分别是中红柳滩 二云母二长花岗岩和大红柳滩石榴子石电气石二云 母二长花岗岩。前者岩石轻微蚀变,以碎裂和变形 为主,60个点位的U-Pb定年数据中获得锆石边部或 无继承核的20个点U-Pb谐和年龄为(209.6±1.5)Ma (魏小鹏等,2017);后者岩石蚀变强,从测得的石榴 子石电气石二云母二长花岗岩2件样品的锆石U-Pb 年代学数据来看,年龄数据分布范围广,年龄数据不 集中,每个样品均有大量的捕获锆石,D009样品7个 测试点数据集中在 207.9~225.6 Ma, 谐和年龄为 (214.3±4.9)Ma(MSWD=1.7),其中3号、9号锆石形 态完整,环带清晰,年龄分别为207.9 Ma和211.4

图 5 花岗岩、伟晶岩和围岩稀土元素球粒陨石标准化配分(a)和微量元素原始地幔标准化蛛网图(b)(标准值据 Sun et al., 1989)

Fig. 5 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of granite, pegmatite and country rocks from the Dahongliutan ore field (normalization values after Sun et al., 1989)

	Table 4 Statistics of isotopic	e ages for granite and	pegmatite from the Da	ahongliutan ore field	
岩体/伟晶岩	岩性	采位置	测年方法	年龄/Ma	资料来源
康西瓦	黑云母二长花岗岩	三十里营房东	锆石 LA-ICP MS U-Pb	213±2.1	Ding et al., 2019
ج ح	黑云母二长花岗岩	513公里处	锆石 LA-ICP MS U-Pb	214±1.8	丁坤等,2020
	二云母二长花岗岩	大红柳滩西南	锆石 LA-ICP MS U-Pb	209.6±1.5	魏小鹏等,2017
	石榴子石电气石二云母二长花岗岩	阿克沙依	锆石 LA-ICP MS U-Pb	214.3±4.9	本文
	石榴子石电气石二云母二长花岗岩	大红柳滩	锆石 LA-ICP MS U-Pb	215.9~255.2	本文
十分加速	二长花岗岩	大红柳滩	锆石 SHRIMP U-Pb	$220\pm2.2,217.4\pm2.2$	乔耿彪等,2015
人红树麻	闪长岩	阿克萨依	锆石 LA-ICP MS U-Pb	216.7±1.8	魏小鹏等,2018
	石英闪长岩	俘虏沟	锆石 LA-ICP MS U-Pb	213.7±2.0	魏小鹏等,2018
	花岗伟晶岩	90号脉	自云母 ⁴⁰ Ar/ ³⁹ Ar	190.1	邹天人等,2006
	花岗伟晶岩	90-1号岩脉	铌钽铁矿 U-Pb	211.9±2.4	Van et al. 2018
	花岗伟晶岩	90-1号岩脉	锡石 U-Pb	218±12	Tall et al., 2018
	花岗闪长岩	509道班西(白龙山)	锆石 LA-ICP MS U-Pb	212.3±1.6	Wang et al., 2020
	石英闪长岩	509道班西(白龙山)	锆石 LA-ICP MS U-Pb	214.7±2.0;214.5±2.8	
	花岗伟晶岩	贫锂伟晶岩	锆石 LA-ICP MS U-Pb	212.3±0.9	Zhou et al., 2021
	花岗伟晶岩	富锂伟晶岩	锆石 LA-ICP MS U-Pb	219.9±0.7	
	二云母花岗岩	509道班西	锆石 LA-ICP MS U-Pb	208.8±1.7	谭克彬等,2021
500 洋亚西	花岗伟晶岩	509道班西(白龙山)	独居石 U-Pb	207.4±0.6	Van et al. 2022
509 迫班四	花岗伟晶岩	509道班西(白龙山)	铌钽铁矿 U-Pb	209.5±1.4	Tall et al., 2022
	花岗伟晶岩	509号脉	铌钽铁矿 U-Pb	208.1±1.5	Wang et al., 2020
	花岗伟晶岩	505号脉	锡石U-Pb	223±11	李侃等,2019
	花岗伟晶岩	I-19脉	白云母 ⁴⁰ Ar/ ³⁹ Ar	184.6±1.8	
	花岗伟晶岩	II-1脉	自云母 ⁴⁰ Ar/ ³⁹ Ar	179.4±1.8	李永等,2022
	花岗伟晶岩	电气石伟晶岩	白云母 ⁴⁰ Ar/ ³⁹ Ar	182.8±1.8;181.9±1.9	

表4 大红柳滩矿田花岗岩、伟晶岩年龄统计表

Fable 4	Statistics of isoto	pic ages for gra	nite and pegr	natite from the	e Dahongliutan (ore field
	Detters of 19000	pre ages for gre	mare wind pega			

Ma。前人发表了与本文石榴子石电气石二云母二 长花岗岩特征相似的岩体年代学成果有:大红柳滩 二长花岗岩的锆石U-Pb测点16个,6组数据较为集 中,但均有继承核(加权平均年龄为(236.0±2)Ma), 认为没有继承核的2个测点(7和10号)的年龄可能 代表成岩年龄((220±2.2)Ma,(217.4±2.2)Ma,乔耿 彪等,2015);509道班西二云母二长花岗岩(副矿物 见电气石、石榴子石),22个点位的U-Pb定年数据分 布在986.8~208.1 Ma范围内,其中8个数据较为集 中,加权平均年龄为(208.8±1.7)Ma(谭克彬等, 2021)。根据目前获得的岩体的锆石U-Pb同位素年 龄和野外的接触关系可以确定,复式岩体主要由先 后侵入的石英闪长岩、黑云母二长花岗岩、二云母二 长花岗岩和石榴子石电气石二云母二长花岗岩 组成。

大红柳滩矿田已获得90号脉伟晶岩的白云 母³⁹Ar-⁴⁰Ar法年龄为190.1 Ma(邹天人等,2006)、90-1号脉的锡石和铌钽铁矿矿物的U-Pb年龄分别为 218 Ma 和 211.9 Ma(Yan et al., 2018)。在大红柳滩 东段 509 道班西的 505 号脉群锡石 U-Pb 年龄为 (223±11)Ma(李侃等, 2019)、锆石的U-Pb年龄数据 变化在 219~212.3 Ma之间(Zhou et al., 2021), 伟晶 岩中独居石、铌钽铁矿的年龄分布在 209.5~207.4 Ma(Yan et al., 2022; Wang et al., 2020); 509 道班西 I-19、Ⅱ-1矿体中的白云母Ar-Ar法坪年龄分别为 (184.6±1.8)Ma和(179.4±1.8)Ma,侵入石英闪长岩 的电气石伟晶岩的白云母Ar-Ar法坪年龄为(182.8± 1.8)Ma和(181.9±1.9)Ma(李永等,2022)。伟晶岩熔 体侵入结晶过程中形成复杂的内部结构和矿物组合 (London, 1992),不同分带结构的不同矿物的测年方 法得出的定年结果差异很大,其变化范围远远超出 一般伟晶岩的冷却结晶时间(Müller et al., 2018),这 可能与同位素体系的适用条件有关。白云 母⁴⁰Ar/³⁹Ar同位素体系的封闭温度为(350±50)℃ (Jäger, 1979)、锆石和独居石 U-Pb 同位素体系的温 度分别为≥800℃和(725±25)℃(Parrish, 1990)、铌钽 铁矿的U-Pb同位素体系的封闭温度为500~700℃ (Li et al., 2019)。白云母³⁹Ar-⁴⁰Ar法所测得年龄偏

年轻,可能是由于白云母的封闭温度略低于伟晶岩中白云母的形成温度所致(李杭等,2019),可能代表了最晚期叠加的热事件时间。高分异的花岗伟晶岩中的锆石往往出现蜕晶质化和热液蚀变现象,导致U-Pb同位素体系重置(Geisler et al., 2007)。伟晶岩中的铌钽铁矿与钾长石、石英共生(Černý et al., 1995),可能为岩浆-热液过渡阶段的产物,具有极低的普通铅含量,成为了高分异稀有金属伟晶岩矿床的理想定年矿物(Glodny et al., 1998; Melleton et al., 2012)。综合分析研究区伟晶岩的锆石、锡石、独居石、铌钽铁矿U-Pb与白云母Ar-Ar法所测得年龄(图6),推断大红柳滩一带稀有金属伟晶岩的成岩成矿作用主要发生在212.3~207.4 Ma,在早侏罗世可能经历了变形与热液改造事件。

5.2 岩浆源区

大红柳滩矿田内石英闪长岩为高钾钙碱性准铝 质岩石,有较高的 $w(MgO), \epsilon_{Hf}(t)$ 值介于+4.3~+6.9, 其形成与幔源区富集程度、熔融程度和形成的深度 有关(魏小鹏,2018)。黑云母二长花岗岩和二云母 二长花岗岩(石榴子石电气石二云母二长花岗岩)均 具有较高Al₂O₃、K₂O₂Na₂O和较低的P₂O₅质量分数, 后者具有更低的TiO₂、Fe₂O₃^T、MnO₂MgO质量分数, $w(K_2O+Na_2O)$ 值分别为6.45~7.56和6.93~8.60,A/CNK 值分别为1.02~1.14和1.07~1.35,为高钾钙碱性过铝 质花岗岩,具有S型花岗岩的特征。伟晶岩具有更 低的TiO₂、Fe₂O₃^T、MnO₂MgO₂CaO和K₂O 质量分 数,相对富集Na₂O, $w(K_2O+Na_2O)$ 值为6.74~12.24,

图 6 大红柳滩矿田花岗伟晶岩与岩体形成年龄(数据来源 见表4)

Fig. 6 Ages of pegmatite and granite in the Dahongliutan ore field (data are listed in Table 4)

A/CNK值为0.99~1.56。在Harker图解(图7a~h)中, 黑云母二长花岗岩、二云母二长花岗岩(石榴子石电 气石二云母二长花岗岩)和伟晶岩的w(SiO₂)与 w(TiO₂)、w(Fe₂O₃^T)、w(MgO)、w(CaO)呈负相关,黑云 母二长花岗岩与后者呈现明显的间断。二云母二长 花岗岩、石榴子石电气石二云母二长花岗岩和花岗 伟晶岩具有高度的相关性,显示连续演化的趋势。

黑云母二长花岗岩与二云母二长花岗岩在稀土 元素球粒陨石标准化配分和微量元素原始地幔标准 化蛛网图(图8a、b)上明显不同。黑云母二长花岗岩 Eu负异常显著,(La/Yb)_N为11.26~12.60,较低的Nb/ Ta比值(7.48~12.54),Zr/Hf比值为30.87~37.99。二 云母二长花岗岩无明显的Eu负异常,更高的(La/ Yb)_N比值(15.78~19.18),较高的Nb/Ta比值(20.87~ 23.62),Zr/Hf比值为29.00~29.52。在La-(La/Sm)_N (图9a)和Nb/Ta-Zr/Hf图解(图9b)中,黑云母二长花 岗岩和二云母二长花岗岩具有不同的趋势线。两者 的锆石Hf同位素组成不同(图10a),其中黑云母二 长花岗岩 $\epsilon_{\rm Hf}(t)$ 为-1.86~+2.16(丁坤等,2020),二云 母二长花岗岩 $\epsilon_{\rm Hf}(t)$ 为-9.49~-4.47(魏小鹏等, 2017)。上述特征显示二云母二长花岗岩不可能是 黑云母二长花岗岩岩浆演化的产物。

石榴子石电气石二云母二长花岗岩稀土元素含 量略低,5件样品的球粒陨石标准化配分图(图8a)变 化较大,Eu负异常变化大,变化较大的(La/Yb)»比 值(2.80~40.81),可能与地壳混染有关,富集Rb、Th、 K,明显的Ti负异常,与二云母二长花岗岩的稀土和 微量元素特征相似(图8b)。石榴子石电气石二云母 二长花岗岩的(La/Sm)_N比值为2.37~3.05,与二云母 二长花岗岩相近并保持近于水平的分离结晶演化方 向(图9a)。石榴子石电气石二云母二长花岗岩的 Nb/Ta 和 Zr/Hf 比值分别为 4.41~22.90 和 20.38~ 32.08,90号富锂伟晶岩的Nb/Ta比值和Zr/Hf比值分 别为0.78~13.35 和14.89~36.26, Nb/Ta比值明显低于 二云母二长花岗岩,反映岩浆演化过程存在流体作 用, 使得 Nb / Ta 比值显著降低 (Ballouard et al., 2016)。在Nb/Ta和Zr/Hf比值演化趋势线(图9b)呈 负相关(Petford et al., 1996),显示同源岩浆演化特 征。具有较低的 ε_{Nd}(t)值为-8.64~-7.81,采用地壳 Hf-Nd同位素相关演化公式计算 ε_{Hf}(t)为-8.30~-7.20 (图 10a、b, Vervoort et al., 1999), 与二云母二长花岗 岩的 ε_{нf}(t)值(-9.49~-4.47)具有一致性,来源于下地 壳物质的部分熔融。石榴子石电气石二云母二长花

图 7 大红柳滩矿田花岗岩与伟晶岩的Harker图解(a~h,二云母二长花岗岩和黑云母二长花岗岩数据来源于魏小鹏等,2017; 2018;丁坤等,2020)

Fig. 7 Harker diagrams of pegmatite and granite in the Dahongliutan ore field (a~h, two-mica monzogranite and biotite monzogranite values after Wei et al., 2017;2018; and Ding et al., 2020)

岗岩与二云母二长花岗岩具有较低的 CaO/Na₂O 比 值(分别为 0.25~0.67 和 0.32~0.33)、Rb/Sr 比值(分别 为 1.10~4.35 和 1.16~1.26)和 Rb/Ba 比值(分别为 0.37~1.34 和 0.69~0.75),显示源区为贫黏土的变质 页岩(Sylvester, 1998)。

5.3 Li同位素特征

本文收集了大红柳滩90号脉锂辉石伟晶岩脉、

黑云母二长花岗岩、石榴子石电气石二云母二长花 岗岩、509道班西(白龙山)一带富锂和贫锂伟晶岩脉 的全岩锂同位素,所有数据列于表5。

表 5 中的 δ⁷Li 结果显示(丁坤等, 2020; Fan et al., 2020; Zhou et al., 2021),石榴子石电气石二云母 二长花岗岩的 δ⁷Li 值为 0.76‰~4.10‰、90 号脉锂辉 石伟晶岩的 δ⁷Li 值为 1.97‰~4.63‰、白龙山贫锂伟

图 8 大红柳滩花岗岩稀土元素球粒陨石标准化配分(a)和微量元素原始地幔标准化蛛网图(b)(标准值据 Sun and McDonough, 1989;二云母二长花岗岩和黑云母二长花岗岩数据来源于魏小鹏等,2017;2018;丁坤等,2020)

Fig. 8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for granite from the Dahongliutan ore field (normalization values after Sun and McDonough, 1989; two-mica monzogranite and biotite monzogranite values after Wei et al., 2017; 2018 and Ding et al., 2020)

图9 大红柳滩矿田花岗岩w(La)-(La/Sm)_N(a)和Nb/Ta-Zr/Hf图解(b)(二去每二长花岗岩和黑云母二长花岗岩数据来源于魏 小鹏等,2017;2018;丁坤等,2020)

Fig. 9 w(La) vs. (La/Sm)_N (a) and Nb/Ta vs. Zr/Hf (b) diagrams for granites from the Dahongliutan ore field(two-mica monzogranite and biotite monzogranite values after Wei et al., 2017;2018, Ding et al., 2020)

晶岩的δ⁷Li值为2.00‰~4.90‰、白龙山富锂伟晶岩 的δ⁷Li值为-1.9‰~0.8‰,围岩的δ⁷Li值为-0.7‰~ 5.48‰,δ⁷Li与Li含量不具有相关性(图11)。大红 柳滩东段509道班西的白龙山富锂伟晶岩的δ⁷Li值 明显低于花岗岩、90号脉富锂伟晶岩和白龙山贫锂 伟晶岩,与Tin Mountain花岗伟晶岩的锂同位素值 明显高于Harney Peak花岗岩的特征完全不同(Teng et al., 2006),与Little Nahanni伟晶岩区的锂同位素 特征也不同(Barnes et al., 2012),说明研究区内岩浆 演化晚期熔体-流体分离过程未发生显著的锂同位 素分馏。石榴子石电气石二云母二长花岗岩、90号 脉富锂伟晶岩和白龙山贫锂伟晶岩等具有一致的 δ⁷Li变化范围(0.76‰~4.9‰),可能指示源区的组 成。90号脉富锂伟晶岩的近脉围岩较高的δ⁷Li值 (5.28‰~5.48‰)可能与伟晶岩侵入后的锂同位素扩 散分馏有关(Wunder et al., 2007)。白龙山贫锂伟晶 岩和富锂伟晶岩分别形成于熔体-流体分离中的贫 水富含硅酸盐的熔体体系和富水贫硅酸盐的熔体 (超临界流体)体系(Fan et al., 2020);富锂伟晶岩较 轻的锂同位素组成可能与流体出溶或短时间的扩散

图10 大红柳滩矿田花岗岩的 ɛ_{нf}(t)(a)、ɛ_{Na}(t)同位素特征(b,二云母二长花岗岩引自魏小鹏等,2017;黑云母二长花岗岩、石榴 子石电气石二云母二长花岗岩引自丁坤等2019;2020)

Fig. 10 Isotopic characteristics of $\varepsilon_{Hf}(t)(a)$, $\varepsilon_{Nd}(t)$ (a) for granites from the Dahongliutan ore field (two-mica monzogranite values after Wei et al., 2017; biotite monzogranite, garnet tourmaline two-mica monzogranite values after Ding et al., 2019; 2020)

	Table 5 Li iso	topic compositions for different	geological bodies in	the Dahongliu	tan ore field		
位置	样品号	岩性	w(Li)/10 ⁻⁶	δ ⁷ Li/‰	2σ	资料来源	
大红柳滩	90-1-3	90号脉锂辉石伟晶岩	3860	4.3	0.07		
	90-1-9	90号脉钠长石伟晶岩	18.54	1.97	0.06		
	Pd90-1	90号脉锂辉石伟晶岩	283.83	4.63	0.03		
	D002-3	黑云母二长花岗岩	50.45	2.25	0.05		
	D002-4	黑云母二长花岗岩	52.22	3.18	0.05	丁抽荤 2020	
	D002-5	黑云母二长花岗岩	45.68	2.86	0.05	1 卅寺,2020	
	D006-1	石榴子石二云母二长花岗岩	20.92	3.25	0.07		
	D006-2	石榴子石二云母二长花岗岩	23.96	2.34	0.03		
	D006-3	石榴子石二云母二长花岗岩	24.37	0.76	0.04		
	D006-4	石榴子石二云母二长花岗岩	5.76	3.1	0.05		
	D007-1	石榴子石二云母二长花岗岩	181.23	3.29	0.04		
	D009-2	电气石二云母二长花岗岩	17.33	° 4.1	0.05		
	D026-1.5m	白云母电气石石英片岩	761.63	5.48	0.04	本文	
	D026-1.8m	含电气石黑云母石英片岩	412.54	5.28	0.07		
	90-1-14	含石榴子石黑云母石英片岩	79.56	-0.57	0.05		
	18BLS12-1	变质砂岩	318	-0.7			
	18BLS12-2	变质砂岩	318	-0.7			
	18BLS17-2	石英闪长岩包体	502	-0.7			
	18BLS1-1	锂辉石伟晶岩	15303	0.8		Zhou et al	
	18BLS13-1	锂辉石伟晶岩 321 −0.4			2021		
	18BLS23-1	不含锂辉石伟晶岩	43.4	4		2021	
	18BLS2h	不含锂辉石伟晶岩	494	3.1			
509道班西	BLS-15	锂辉石伟晶岩	16691	-1.9			
(白龙山)	BLS-16	锂辉石伟晶岩	5835	-1.7			
	BLS-17	锂辉石伟晶岩	8863	-0.6			
	BLS-18	锂辉石伟晶岩	1447	-1.9			
	BLS-25	锂辉石伟晶岩	1682	0.1		Fan et al	
	BLS-26	锂辉石伟晶岩	3334	-1.3		2020	
	BLS-47	不含锂辉石伟晶岩 84.6 4.9		4.9		2020	
	BLS-49	不含锂辉石伟晶岩	182	2.0			
	BLS-52	不含锂辉石伟晶岩	106	4.7			

表5 大红柳滩矿田不同地质体的Li同位素组成

Table 5	Li isotopic compositions f	or different geological	l bodies in the Dahongliutan ore fiel
---------	----------------------------	-------------------------	---------------------------------------

图 11 大红柳滩矿田不同地质体 δ⁷Li变化图解(δ⁷Li数据引自丁坤等 2020; Fan et al., 2020; Zhou et al., 2021) Fig. 11 Discrimination diagram of δ⁷Li for different geological bodies in the Dahongliutan ore field(δ⁷Li values after Ding et al., 2020; Fan et al., 2020; Zhou et al., 2021)

驱动分馏有关,伟晶岩的冷却速率是控制伟晶岩锂 同位素组成的重要因素,较慢的冷却导致锂同位素 组成较重,高冷却速率有利于富锂伟晶岩的形成 (Zhou et al., 2021)。大红柳滩 90 号脉富锂伟晶岩的 锂同位素特征(δ⁷Li值为1.97‰~4.63‰)与东段白龙 山富锂伟晶岩(δ⁷Li值为-1.9‰~0.8‰)明显不同,脉 体矿化特征与规模以及矿物组合也存在差异(表1)。 90号脉富锂伟晶岩的边缘带和中部富集呈树枝状、 团簇状集合体产出的磷铁锂矿,含量达10%~15% (凤永刚等,2019),指示形成伟晶岩的熔体是富磷的 (London, 2008)。元素P能降低花岗岩的液相线和 固相线温度和黏度,增加H₂O在熔体中的溶解度 (Dingwell et al., 1993)。在一定的物理化学条件下, 花岗岩浆的不混溶作用可以分离出共轭的富挥发 分、贫硅熔体和贫挥发分、富硅熔体(李建康等, 2007)。挥发分中的F对Li元素和锂同位素分馏过 程中起关键作用(Barnes et al., 2012)。富挥发分有 利于Na、Li和碱土元素的富集(Veksler, 2004)。在 富 P、Li伟晶岩熔体中,P与Li具有强的亲和性,形成 的磷铁锂 矿 被认为是最先结晶的矿物(Moore, 1973)。因此,大红柳滩富锂伟晶岩的形成不仅仅受 岩浆演化晚期熔体-流体分离的共轭体系、侵入后的 冷却速率、扩散驱动等因素影响,还受到岩浆演化晚 期熔体-流体分离过程中P、F等富挥发分元素的制 约,可能是90号富锂伟晶岩脉形成的关键因素。

6 结 论

(1)大红柳滩矿田内岩体的侵入接触关系和年 代学数据显示,复式岩体主要由晚三叠世先后侵入 的石英闪长岩、黑云母二长花岗岩和二云母二长花 岗岩(石榴子石电气石二云母二长花岗岩)组成,表 现为不同的地球化学、ε_{Hf}(t)和 ε_{Nd}(t)值,显示三者来 源于不同的岩浆源区。二云母二长花岗岩不是黑云 母二长花岗岩岩浆演化的产物。

(2) 石榴子石电气石二云母二长花岗岩与二云

母二长花岗岩具有相似的地球化学、E_{Hf}(t)值和 E_{Nd}(t) 值,指示同源岩浆演化,源自下地壳物质的部分熔 融,具有较低的CaO/Na₂O、Rb/Sr和Rb/Ba比值,显示 源区为贫黏土的变质页岩,较低的Nb/Ta比值,反映 岩浆演化过程存在流体作用。

(3)石榴子石电气石二云母二长花岗岩、90号 富锂伟晶岩和白龙山贫锂伟晶岩具有一致的δ⁷Li 值,可能代表了源区的组成;近矿围岩较高的δ⁷Li 值,可能是锂同位素扩散导致。90号脉富锂伟晶岩 是富P的,且与东段509道班西富锂伟晶岩的δ⁷Li值 明显不同,意味着岩浆演化晚期熔体-流体分离过程 中P、F等挥发分元素对其形成起关键作用。

致 谢 样品处理与测试得到长安大学成矿作 用及其动力学实验室老师的帮助;匿名审稿专家给 予了很好的建议和具体修改意见,对于提高文章水 平很有裨益,在此表示衷心的感谢!

References

- Barnes E M, Weis D and Groat L A. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 132-133: 21-36.
- Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granties: A maker of the magmatic-hydrothermal transition[J]. Geology, 44 (3): 231-234.
- Černý P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied Geochemistry, 7(5): 393-416.
- Černý P and Lenton P G. 1995. The Buck and Pegli lithium deposits, southeastern Manitoba: The problem of updip fractionation in subhorizontal pegmatite sheets[J]. Econ. Geol., 90(3): 658-675.
- Černý P and Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. The Mineralogist, 43(6): 2005-2026.
- Deveaud S, Millot R and Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology, 411: 97-111.
- Ding K, Liang T, Yang X Q, Zhou Y, Feng Y G, Li K, Teng J X and Wang R T. 2019. Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in western Kunlun orogenic belt, NW China[J]. Journal of Central South University, 26: 3420-3435.
- Ding K, Liang T, Feng Y G, Zhang Z, Ding L and Li K. 2020. Petrogenesis of Dahongliutan biotite monzogranite in western Kunlun orogen: Evidence from zircon U-Pb age and Li-Hf isotope[J]. Northwestern Geology, 53(1): 24-34(in Chinese with English ab-

stract).

- Dingwell D B, Konche R and Webb S L. 1993. The effect of P_2O_5 on the viscosity of haplogranitic liquid[J]. European Journal of Mineralogy, 5: 133-140.
- Fan J J, Tang G J, Wei G J, Wang H, Xu Y G, Wang Q, Zhou J S, Zhang Z Y, Huang T Y and Wang Z L. 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, (352-353): 1-17.
- Feng Y G, Wang Y Q, Zhang Z, Liang T, Zhou Y, Gao J G and Teng J X. 2019. Geochemistry of triphylite in Dahongliutan lithium pegmatites, Xinjiang: Implications for pegmatite evolution[J]. Acta Geologica Sinica, 93(6): 1405-1421(in Chinese with English abstract).
- Gao J G, Liang T, Feng Y G, Tan X J, Li Y, Zhao R Y, Zhou B and Zhang J B. 2023a. Relationship between Indosinian magmatic activity and Li-Be-rare metal mineralization in the eastern section of West Kunlun and its implications for prospecting[J/OL]. Geology in China, 1-16(in Chinese with English abstract).
- Gao J G, Linag T, Feng Y G, Huang F, Wang D H, San J Z, Ding J G and Cen J B. 2023b. Genetic relationship between complex massif and pegmatite in Halong rare metal ore-concentrated area, Altay[J]. Acta Petrologica Sinica, 39(7): 1908-1930(in Chinese with English abstract).
- Geisler T, Schaltegger U and Tomaschek F. 2007. Re-equilibration of zircon in a queous fluids and melts[J]. Elements, 3(1): 43-50.
- Glodny J, Grauert B, Fiala J, Vejnar Z and Krohe A. 1998. Metapegmatites in the western Bohemian massif: Ages of crystallisation and metamorphic overprint, as constrained by U-Pb zircon, monazite, garnet, columbite and Rb-Sr muscovite data[J]. Geologische Rundschau, 87(1): 124-134.
- Jäger E. 1979. Lectures in isotope geology[M]. Berlin: Springer-Verlag. 56-76.
- Jiang C F, Yang J S and Feng B G. 1992. Opening -closing tectonics in Kunlun mountains[M]. Beijing: Geological Publishing House. 1-224(in Chinese).
- Li J K, Wang D H, Zhang D H and Fu X F. 2007. Mineralization mechanism and continental geodynamics of pegmatite type deposits in western Sichuan, China[M]. Beijing: Atomic Energy Press. 1-187 (in Chinese).
- Li K, Gao Y B, Teng J X, Jin M S and Li W. 2019. Metallogenic geological characteristics, mineralization age and resource potential of granite-pegmatite-type rare metal deposits in Dahongliutan area, Hetian county, Xinjiang[J]. Northwestern Geology, 52(4): 206-221(in Chinese with English abstract).
- Li H, Hong T, Yang Z Q, Chen J Z, Ke Q, Wang X H, Niu L and Xu X W. 2019. Comparative study on zircon, cassiterite and coltan U-Pb dating and ⁴⁰Ar /³⁹Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 36(9): 2869-2892(in Chinese with English abstract).

- Li P, Li J K, Chou I M, Wang D H and Xiong X. 2019. Mineralization epochs of granitic rare-metal pegmatite deposits in the Songpan-Ganzê Orogenic Belt and their implications for orogeny[J]. Minerals, 9(5): 280.
- Li S Z, Jahn B, Zhao S J, Dai L M, Li X Y, Suo Y H, Guo L L, Wang Y M, Liu X C, Lan H Y, Zhou Z Z, Zheng Q L and Wang P C. 2017. Triassic southeastward subduction of North China Block to South Block: Insights from new geological, geophysical and geochemical data[J]. Earth-Scicence Reviews, 166: 270-285.
- Li Y, Wang W, Du X F, Chen Z L, Ma H D, Qiu L, Liu W, Zhang Y F and Huo H L. 2022. ⁴⁰Ar/³⁹Ar dating of muscovite of pegmatite type rare metal deposit in western 509 Daoban, Dahongliutan, West Kunlun and its limitation to regional mineralization[J]. Geology in China, 49(6):2031-2033(in Chinese with English abstract).
- London D, Cerny P, Loomis J L and Pan J J. 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites[J]. The Canadian Mineralogist, 28: 771-786.
- London D. 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 30(3): 499-540.
- London D. 2008. Pegmatites[J]. The Canadian Mineralogist, Special Publications, 10: 188-189.
- London D. 2018. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349-383.
- Ludwig K R. 2003. User's manual for isoplot 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.
- Martins T, Roda-Robles E, Lima A, Parseval P and Martins T. 2012. Geochemistry and evolution of micas in the Barroso——A lvao pegmatite field, northern Portugal[J]. The Canadian Mineralogist, 50(4): 1117-1129.
- Melleton J, Gloaguen E, Frei D, Novák M and Breiter K. 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian Domain of the Variscan Bohemian Massif, Czech Republic[J]. The Canadian Mineralogist, 50: 1751-1773.
- Moore P B. 1973. Pegmatite phosphates: Descriptive mineralogy and crystal chemistry[J]. Mineral Record, 4: 103-130.
- Müller A, Spratt J, Thomas R, Williamson B J and Seltmann R. 2018. Alkali-F-rich albite zones in Evolvde NYF pegmatites: The product of melt -melt immiscibility[J]. The Canadian Mineralogist, 56 (4): 657-687.
- Parrish R R. 1990. U-Pb dating of monazite and its application to geological problems[J]. Canadian Journal of Earth Sciences, 27(11): 1431-1450.
- Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The cordillera blanca batholith, Peru[J]. Journal of Petrlogy, 37(6): 1491-1521.
- Qiao G B, Zhang H D, Wu R Z, Jin M S, Du W, Zhao X J and Chen D H. 2015. Petrogenesis of the Dahongliutan monzogranite in western Kunlun: Constraints from SHRIMP zircon U-Pb geochronolo-

gy and geochemical characteristics[J]. Acta Geologica Sinica, 90 (10): 2830-2846(in Chinese with English abstract).

- Rudnick R L and Gao S. 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64.
- Shaw R A, Goodenough K M, Roberts N M W, Horstwood M S A, Henery S R and Gunn A G. 2016. Petrogenesis of rare-metal pegmatites in highrgrade metamorphic Terranes: A case study from the Lewisian gneiss complex of Northwest Scotland[J]. Precambrian Research, 281: 338-362.
- Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42: 313-345.
- Sylvester P L. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45: 29-44.
- Tan K B, Guo Q M and Guo Y P. 2021. Tectonic significance and U-Pb age of granite in 509 Daoban Li-Be deposit, Xinjiang[J]. Xinjiang Non-ferrous Metals, 44(2): 6-10(in Chinese with English abstract).
- Tan X J and Wang Z M. 2020. General high-pressure closed acidic decomposition method of rock samples for trace element determination using-inductively-coupled-plasma-mass-spectrometry[J]. Journal of Analytical Chemistry, 75: 1295-1303.
- Tang J L, Ke Q, Xu X W, Kang K, Li H, Tan K B, Dong L H and Liu Y X. 2022. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica, 38(3): 655-675(in Chinese with English abstract).
- Teng F Z, McDonough W F, Rudnick R L and Walker R J. 2006. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 243: 701-710.
- Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies[J]. Chemical Geology, 210(14): 7-31.
- Vervoort J D, Patchett P J, Blichert-Toft J and Albarede F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters, 168: 79-99.
- ⁶ Wang H, Gao H, Zhang X Y, Yan Q H, Xu Y, Zhou K, Dong R and Li P. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, doi: 10.1016 / j. lithos. 2020. 105449.
- Wang H, Li P, Ma H D, Zhu B Y, Qiu L, Zhang X Y, Dong R, Zhou K L, Wang M, Wang Q, Yan Q H, Wei X P, He B, Lu H and Gao H. 2017. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 41(6): 1053-1062(in Chinese with English abstract).
- Wei X P, Wang H, Hu J, Mu S L, Qiu Z W, Yan Q H and Li P. 2017. Geochemistry and geochronology of the Dahongliutan two-mica granite

- Wei X P, Wang H, Zhang X Y, Dong R, Zhu S B, Xing C H, Li P, Yan Q H and Zhou K L. 2018. Petrogenesis of Triassic high-Mg diorites in western Kunlun orogen and its tectonic implication[J]. Geochimica, 47(4): 363-379(in Chinese with English abstract).
- Wunder B, Meixner A, Romer R L, Feenstra A, Schettler G and Heinrich W. 2007. Lithium isotope fractionation between Li-bearing staurolite, Li mica and aqueous fluids: An experimental study[J]. Chemical Geology, 238: 277-290.
- Yan Q H, Qiu Z W, Wang H, Wang M, Wei X P, Li P, Zhang R Q, Li C Y and Liu J P. 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 100: 561-573.
- Yan Q H, Wang H, Chi G X, Wang Q, Hu H, Zhou K L and Zhang X Y. 2022. Recognition of a 600km long Late Triassic rate metal(Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, western China[J]. Econ. Geol., 117(1): 213-236.
- Zhang H, Lü Z H and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792-814(in Chinese with English abstract).
- Zhang Y, Niu Y, Hu Y, Liu J, Ye L, Kong J and Duan M. 2016. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun orogen, China: Evidence from geochronology and geochemistry of the Arkarz pluton[J]. Lithos, 245: 191-204.
- Zhou J S, Wang Q, Xu Y G, Cempirk J, Wang H, Ma J L, Wei G J, Huang T Y, Zhu G H and Zhang L. 2021. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granitepegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 584: 1-13.
- Zou T R and Li Q C. 2006. Rare and Rare Earth metallic deposits in Xinjiang, China[M]. Beijing: Geological Publishing House. 34-51 (in Chinese).

附中文参考文献

- 丁坤,梁婷,周义,凤永刚,张泽,丁亮,李侃.2020. 西昆仑大红柳滩 黑云母二长花岗岩岩石成因:来自锆石U-Pb年龄及Li-Hf同位 素的证据[J]. 西北地质,53(1): 24-34.
- 风永刚,王艺茜,张泽,梁婷,周义,高景刚,滕家欣.2019.新疆大红 柳滩伟晶岩型锂矿床中磷铁锂矿地球化学特征及其对伟晶岩 演化的指示意义[J].地质学报,93(6):1405-1421.
- 高景刚,梁婷,凤永刚,谭细娟,刘艳荣,李永,赵如意,周斌,张建新.

2023a. 西昆仑东段印支期岩浆活动与锂铍稀有金属成矿关系 及找矿前景分析[J/OL]. 中国地质:1-16. http://kns.cnki.net/kcms/ detail/11.1167.P.20230614.1415.004.html.

- 高景刚,梁婷,凤永刚,黄凡,王登红,三金柱,丁建刚,岑炬标. 2023b. 阿尔泰哈龙稀有金属矿集区复式岩体与伟晶岩成因关 系探讨[J]. 岩石学报,39(7):1908-1930.
- 姜春发,杨经绥,冯秉贵.1992.昆仑开合构造[M].北京:地质出版 社.1-224.
- 李建康,王登红,张德会,付小方.2007.甲基卡式花岗伟晶岩型矿床 的形成机制及大陆动力学背景[M].北京:原子能出版社.1-187.
- 李侃,高永宝,滕家欣,金谋顺,李伟.2019. 新疆和田县大红柳滩一 带伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方 向[J]. 西北地质,52(4): 206-221.
- 李杭,洪涛,杨智全,陈建中,柯强,王学海,牛磊,徐兴旺.2019.稀有 金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/³⁹Ar 测年对比研究——以阿尔金中段吐格曼北锂铍矿床为例[J].岩 石学报,36(9):2869-2892.
- 李永,王威,杜晓飞,陈正乐,马华东,邱林,刘伟,张雅芳,霍海龙. 2022. 西昆仑大红柳滩 509 道班西伟晶岩型稀有金属矿白云母⁴⁰Ar/³⁹Ar定年及其对区域成矿的限定[J]. 中国地质,49(6): 2031-2033.
- 乔耿彪,张汉德,伍跃中,金谋顺,杜玮,赵晓健,陈登辉.2015.西昆 仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报,89(7):1180-1194.
- 谭克彬,郭岐明,郭勇明.2021.新疆和田509道班西锂铍多金属矿
 床花岗岩U-Pb年龄及其构造意义[J].新疆有色金属,44(2):6-10.
- 唐俊林,柯强,徐兴旺,康凯,李杭,谭克彬,董连慧,刘洋旭.2022.西 昆仑大红柳滩地区龙门山锂镀伟晶岩区岩浆演化与成矿 作用[J].岩石学报,38(3):655-675.
- 王核,李沛,马华东,朱炳玉,邱林,张晓宇,董瑞,周楷麟,王敏,王 茜,闫庆贺,魏小鹏,何斌,卢鸿,高昊.2017.新疆和田县509道 班西(白龙山)超大型伟晶岩型锂铷多金属矿床的发现及其意 义[J].大地构造与成矿学,41(6):1053-1062.
- 魏小鹏,王核,胡军,慕生禄,丘增旺,闫庆贺,李沛.2017.西昆仑大 红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意 义[J].地球化学,46(1):66-80.
- 魏小鹏,王核,张晓宇,董瑞,朱世波,邢春辉,李沛,闫庆贺,周楷麟. 2018. 西昆仑东部晚三叠世高镁闪长岩的成因及其地质意 义[J]. 地球化学,47(4): 363-379.
- 张辉,吕正航,唐勇.2019.新疆阿尔泰造山带中伟晶岩型稀有金属 矿床成矿规律、找矿模型及其找矿方向[J].矿床地质,38(4): 792-814
- 邹天人,李庆昌.2006.中国新疆稀有及稀土金属矿床[M].北京:地 质出版社.34-51.