文章编号:0258-7106 (2018) 05-1018-19

Doi: 10. 16111/j. 0258-7106. 2018. 05. 007

滇东北乐红大型铅锌矿床流体包裹体地球化学*

赵 冻^{1,2},韩润生^{1,2**},任 涛^{1,2},王加昇^{1,2},吴海枝^{1,2},张小培^{1,2},崔峻豪^{1,2} (1昆明理工大学国土资源工程学院,云南昆明 650093;2有色金属矿产地质调查中心西南地质调查所,云南昆明 650093)

摘 要 乐红铅锌矿床是扬子地块西南缘滇东北铅锌(银)多金属矿集区中的典型代表之一。通过对该矿床不同成矿阶段闪锌矿、石英、重晶石和方解石中流体包裹体岩相学、显微测温学和显微激光拉曼探针等测试,阐述了该矿床成矿流体性质和演化特征,并探讨了其成矿过程。研究发现,该矿床流体包裹体主要包括4类: I 类气相、

Ⅱ类水溶液相(由Ⅱa型-富液相气液两相、Ⅱb型-富气相气液两相、Ⅱc型纯液相组成)、Ⅲ类含CO2三相(Vco2+

L_{co₂}+L_{H₂o})及Ⅳ类含子矿物(L+V+S)包裹体。结果显示,重晶石阶段的均一温度为240.3~319.3℃,w(NaCl_{eq})为2.24%~10.73%,表现出中高温-中低盐度流体性质;白云石-黄铁矿-石英阶段具有中-高温(219.8~310.1℃),中盐度(w(NaCl_{eq})为7.02%~17.61%)特征;闪锌矿-方铅矿-黄铁矿阶段,包括S1闪锌矿具有中温(217.8~292.2℃)-中盐度(w(NaCl_{eq})为8.81%~16.71%)性质;S2闪锌矿具有中低温(180.2~241.3℃)-中盐度(w(NaCl_{eq})为7.73%~18.47%)性质;S3闪锌矿具有中低温(140.4~227.4℃)-中低等盐度(w(NaCl_{eq})为0.35%~19.21%)的流体性质,通过该阶段中含CO₂三相包裹体测试,估算成矿压力和成矿深度分别为45~74.9 MPa(平均58.2 MPa),1.7~2.8 km。方解石阶段均一温度为165.3℃,中等盐度,w(NaCl_{eq})为11.28%,表现出低温-中等盐度的特征。不同成矿阶段的包裹体温度大致反映了该矿床成矿流体从早阶段至晚阶段,呈现中高温、中低盐度→中温、中等盐度→中低温、中低盐度的演化过程;早期高温-低盐度深部流体在热动力和构造应力驱动下大规模运移,受断裂构造影响发生减压沸腾作用,同时与大气降水发生混合,成矿流体物化性质陡变引起铅锌硫化物等的沉淀,并最终形成矿床。该研究为揭示矿床流体性质、演化及矿床成因提供了证据,深化了"构造-流体'贯入'成矿"模型,亦对深化矿床成矿机制与指导找矿预测具有重要意义。

关键词 地球化学;成矿过程;热液成矿阶段;乐红铅锌矿床;滇东北矿集区 中图分类号: P618.42; P618.43 文献标志码:A

Characteristics of fluid inclusions geochemistry of Lehong large-sized Pb-Zn ore deposit, northeastern Yunnan Province

ZHAO Dong^{1,2}, HAN RunShen^{1,2}, REN Tao^{1,2}, WANG JiaSheng^{1,2}, WU HaiZhi^{1,2}, ZHANG XiaoPei^{1,2} and CUI JunHao^{1,2}

(1 Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China;
 2 Southwest Institute of Geological Survey, Geological Survey Center for Nonferrous Metals Resources, Kunming 650093, Yunnan, China)

Abstract

The Lehong lead-zinc deposit is one of the typical deposits in the northeastern Yunnan lead-zinc ore concentration area. According to the petrography as well as the laser Raman microspectroscopic and micro-thermometry of fluid inclusions, the authors discovered sphalerite, quartz, barite and calcite of different mineralization stages, and expounded the origin, property and evolution of ore-forming fluid and the metallogenic processes. There are

第一作者简介 赵 冻,男,1990年生,博士研究生,矿产普查与勘探专业。Email:zhaodong6511@163.com

^{*} 本文得到国家自然科学基金项目(编号:41572060、U1133602)、中国地调局整装勘查综合研究项目(编号:12120114013901)、云南省矿 产资源预测与评价工程实验室(编号:2011)和云南省昆明理工大学创新团队项目(编号:2012、2010)联合资助

^{* *}通讯作者 韩润生,男,1964年生,研究员,博士生导师,从事矿床学、构造成矿动力学及隐伏矿床预测研究。Email: 554670042@qq.com 收稿日期 2016-12-12;改回日期 2017-02-05。秦思婷编辑。

four types of fluid inclusions, i.e., pure gaseous-type (I), gas-aqueous-type (II) which is composed of aqueousrich gas-aqueous-type inclusions (II a), gas-rich gas-aqueous-type inclusions (II b) and pure liquid-type inclusions (II c), V_{C02}+L_{C02}+L_{H20} three-phase inclusions (III), and three-phase inclusions containing daughter minerals (IV), respectively. The test results show that the homogenization temperature in the barite stage varies from 240.3°C to 319.3°C, the salinity varies from 2.24% to 10.73%, and it is shown that the fluid occurred in mediumhigh temperature and low-middle salinity. The dolomite-pyrite-quartz stage occurred in middle-high temperature $(219.8 \sim 310.1 \,^{\circ}\text{C})$ and medium-low salinity $(w(\text{NaCl}_{so}) 7.02\% \sim 17.61\%)$. The ore-forming fluid in the sphaleritegalena-pyrite stage shows that the sphalerite of first generation (S1) formed in medium temperature (217.8~ 292.2° C) and medium salinity (w(NaCl_{e0}) 8.81%~16.71%). The sphalerite of second generation (S2) formed in medium-low temperature (180.2~241.3 $^{\circ}$ C) and medium salinity (w(NaCl_{eo}) 7.73%~18.47%). The sphalerite of third generation (S3) formed in medium-low temperature $(140.4 \sim 227.4^{\circ}C)$ and medium-low salinity $(w(NaCl_{eo})$ 0.35%~19.21%). Based on three-phase inclusions with CO₂ in S3, it is estimated that the pressure and depth of mineralization varies from 45 MPa to 74.9 MPa with an average of 58.2 MPa and 1.7 km to 2.8 km, respectively. In the calcite stage, the homogenization temperature is 165.3 °C, and the salinity $w(Na \mathbb{Q}l_{eq})$ is 11.28%. In this stage the ore-forming fluid had low temperature and medium salinity. The homogenization temperatures of diffe-rent stages can roughly indicate the evolutionary process of the ore-forming fluid from early stage to late stage. The temperature appears in the evolutionary trend of medium-high temperature and medium-low salinity-medium temperature and medium salinity medium-low temperature and medium and low salinity. The fluid in the early stage decompressed and boiled by structural stress, and was mixed with meteoric water at the same time. Hydrothermal fluid migrated upward along the Lehong fault, and injected into the faults in the host rocks. When the physical-chemical conditions of ore-forming fluid changed, the ore-forming materials in the fluid precipitated in secondary order faults or cracks near the Lehong fault, and formed the Lehong lead-zinc deposit. Meanwhile, strong dolomitization, pyritization and silicification and some other alterations occur near the edges of fault zones. This discussion about metallogenic process not only provides important evidence for further improvement of metallogenic model of "the fluid penetrating and mineralization", but also has important significance in predicting the location of the orebodies.

Keywords: geochemistry, ore-forming process, metallogenic stage, Lehong Pb-Zn deposit, northeastern Yunnan ore concentration area

滇东北地区是中国重要的铅锌银多金属矿集区 之一,也是扬子地块西南缘川-滇-黔铅锌多金属成矿 域的重要组成部分,位于小江深断裂东侧滇东北坳 陷盆地南部(柳贺昌等,1999;韩润生等,2012; 2014)。 滇东北"多字型"构造控制了北东向斜列展布的铅锌 (银、锗)成矿带(韩润生等,2007; 2014)。热液矿床是在 流体参与下形成的,而矿物在结晶过程中捕获的流体 包裹体是研究成矿流体最直接的对象,因此流体包裹 体研究成为确定矿床成矿流体物理化学性质,探讨成 矿作用最重要的研究方法(Roedder,1984; Candela et al.,1986; 卢焕章等,2004)。近十年来,滇东北矿集区 流体包裹体的研究取得了长足的进展(胡耀国,2000; Han et al., 2007;Wang et al.,2003;周家喜等,2012;张长 青等,2005; Zhou et al.,2013; 韩润生等,2007),众多学 者通过区内会泽、昭通毛坪、茂租、富乐厂超大型-大型 铅锌矿床流体包裹体研究,厘定了成矿过程中流体活 动期次和包裹体的主要类型,获得了成矿流体的温 度、压力、盐度、密度和成分等各种参数,为成矿流体 来源、成矿条件和矿床类型提供了依据(韩润生等, 2007;2016;司荣军,2006;张振亮,2006;李波,2010;邱 文龙,2013;黄智龙等,2004;李文博等,2006)。然而,乐 红大型铅锌矿床由于缺乏成矿流体物理化学方面的 资料,其成因一直存在争议,现存观点包括沉积-改造-后成(柳贺昌等,1999)、断裂构造控制为主的热液充填 交代型(周云满,2003)、MVT(张长青,2005)和HZT型 (韩润生等,2012)。本文以不同矿化阶段石英、重晶 石及闪锌矿中的流体包裹体为研究对象,通过系统的 包裹体岩相学和包裹体显微测温研究,并对其中一些 具有代表性的包裹体进行了激光拉曼光谱分析,探讨 了成矿流体与成矿作用的关系,为揭示该矿床流体性 质、演化及矿床成因提供流体证据,对深化HZT型铅 锌矿床成矿机制、指导找矿预测具有重要意义。

1 矿床地质概况

乐红大型铅锌矿床是滇东北矿集区典型矿床之 一,矿种以铅锌为主,伴生银及镓、锗、镉分散元素, 铅锌资源总量在300万吨以上(黄典豪,2000;周云满, 2003;丁德生,2007;张云新等,2014)。该矿床地处滇 东台褶带滇东北台褶束内,西以巧家-莲峰断裂为 界,东以乐马厂断裂为界。矿区出露地层由老到新 依次为:震旦系上统灯影组上段,主要为中厚层状 粉-细晶(硅质)白云岩,为矿床主要的赋矿层位;寒 武系,以泥岩、砂岩、白云岩为主;奥陶系主要为泥 岩、石英砂岩、灰岩。寒武系与上覆奥陶系红石崖组 和下伏震旦系灯影组均为假整合接触(图1a~c)。断 裂总体走向为NW向,倾向SW,由F₁和F₂两条主要 断裂组成,是矿区主要的容矿断裂。褶皱构造主要 有包包上向斜和金家沟背斜(图1b、c),轴向均为NE 向,两翼基本对称。区内见深灰、灰黑色致密块状玄 武岩,分布于乐红矿区北西部,另在小寨一带亦见出 露,多见于新街子向斜褶皱核部(图1a),前人研究认 为该玄武岩为下二叠统峨眉山玄武岩(柳贺昌等, 1999;黄典豪,2000;周云满,2003;张云新等,2014)。

矿体产于震旦系灯影组细晶(硅质)由云岩中,总 体呈透镜状、脉状及不规则状产出。矿体水平长度达 1846 m,倾斜深度 > 892 m,最大厚度 29.64 m,平均厚 7.37 m, 矿体平均品位 Pb+Zn为1.30%~44.40%, 平均 19.57%(黄典豪,2000;周云满,2003;张云新等,2014),银 品位 8.97~404.29 g/t(平均 80.47 g/t)。原生矿石构造 有致密块状、角砾状、浸染状、团斑状、细(网)脉状等 (图2),矿石结构以粒状结构为主,其次为交代残余结 构,溶蚀、填隙、包含结构等(图3),乐红铅锌矿床矿石 矿物主要包括方铅矿、闪锌矿和黄铁矿。闪锌矿是最 主要的矿石矿物,呈(团)块状、脉状、斑状和浸染状产 出。依据其颜色的变化及矿物之间的穿插接触关系, 本次研究厘定3个世代闪锌矿,依次为棕褐色(S1)、棕 红色(S2)及浅棕黄色(S3)。S1为硫化物阶段早期结晶 的产物,可能与热液成矿震荡效应有关联,呈细脉状、 浸染状产于围岩裂隙中。S2和S3受构造控制明显, 产于断裂破碎带内及围岩裂隙内,通常S2世代闪锌矿 呈团块状-块状,S3世代闪锌矿呈细(网)脉状,显微镜 下S3世代闪锌矿包裹、溶蚀S2世代闪锌矿。方铅矿 含量仅次于闪锌矿,呈稀疏浸染状、脉状、团块状产 出。在野外观察基础上本研究将该矿床中方铅矿划 分为2个世代,即G1见于白云石角砾间及黄铁矿的孔 隙中,与S2、S3的关系为互相溶蚀包裹,为同期形成; G2断裂带内的黄铁矿透镜体中及断裂上盘或下盘中 均有分布,呈脉状穿切早期生成的S1、S2、S3及G1等。

矿区围岩蚀变类型主要有热液白云石化、热液 方解石化、硅化、重晶石化、黄铁矿化等。白云石化 为白色或乳黄色,中-细晶,团斑状、脉状或网脉状产 出,见于矿体内部、断裂破碎带及层间破碎带中,与 矿化关系密切。方解石化为白色、中粗晶、脉状,分 布于矿化带及层间破碎带中,脉内见星点状闪锌矿、 方铅矿。硅化见于构造带中,呈细-粗晶粒状,半透 明-透明,与中粗晶白云岩共生,呈交代结构、假象交 代结构等,呈细脉状分布于闪锌矿与粗晶白云岩接 触部位,硅质白云岩呈浅灰色或灰白色,硬度大,见 斑点状石英集合体,具梳状构造特征。重晶石,呈白 色,团斑状、脉状产出,显微镜下呈半自形粒状结构, 在其颗粒接触部位可见星点状黄铁矿的分布。黄铁 矿化见于矿体内部及近矿围岩中,呈脉状、浸染状分 布于白云岩节理和裂隙中,近矿体蚀变强烈,呈脉 状、透镜状,远离矿体黄铁矿化相对减弱。依据矿脉 穿插关系、不同蚀变矿物特征及组合类型、矿石组构 等特征,将热液成矿期划分为4个成矿阶段(表1): ① 重晶石阶段;② 白云石-黄铁矿-石英阶段;③ 闪 锌矿-方铅矿-黄铁矿阶段;④方解石-重晶石阶段。 北西向F。断裂既是流体的运移通道,又是流体活动 的屏障和沉淀场所,在成矿作用中,矿化蚀变基本由 F。断裂东盘至西盘呈面状分布,由于构造多期次活 动及热液流体活动的控制,岩石蚀变和矿化是在同 一空间内含矿热液多次充填交代连续演化所形成 的,矿化蚀变分带界线表现为渐变过渡或叠加等特 点。结合前期对不同中段矿化-蚀变分带研究,自东 向西将该矿床矿化带划分为矿化边缘带(I)、矿化过 渡带(Ⅱ)和矿化中心带(Ⅲ)3个带(图4)。

2 样品采集及分析方法

系统采集不同中段各蚀变带内具有代表性的矿 化-蚀变样品(表2,图4),室内对样品进行系统地岩 矿鉴定,对乐红铅锌矿床重晶石、石英、闪锌矿及方

图 1 川滇黔接壤区区域构造图与矿床分布图(a,转引自韩润生等,2014改编)、乐红铅锌矿区地质简图 (b,据张云新等,2014改编)和乐红铅锌矿A-B横剖面图(c,据周云满,2003改编)

1一奧陶系大箐组;2一奧陶系上巧家组;3一奧陶系下巧家组;4一奧陶系红石崖组;5一寒武系西王庙组;6一寒武系陡坡寺组;7一寒武系 龙王庙组;8一寒武系沧浪铺组;9一寒武系筇竹寺组;10一震旦系灯影组上段第三亚段;11一震旦系灯影组上段第二亚段;12一震旦系 灯影组上段第一亚段;13—峨眉山玄武岩;14—区域主要断裂;15—断裂破碎带及编号;16—矿体;17—Pb-Zn矿床;18—泥岩;19—白云岩; 20—硅质条带白云岩;21—地质界线;22、23—地层产状;24—向背斜轴线;25—A-B剖面;26—钻孔编号;27—平硐及编号;28—研究区;29—市县 Fig. 1 Regional structural and deposit distribution map in the Sichuan-Yunnan-Guizhou after (a, modified after Han et al., 2014), geological sketch map of the Lehong lead-zinc deposit (b, modified after Zhang et al., 2014) and sketch showing the A-B cross section of the Lehong Lead-zinc deposit (c, modified after Zhou, 2014)

1—Upper-Middle Ordovician Daqing Formation; 2—Upper Ordovician Qiaojia Formation; 3—Lower Ordovician Qiaojia Formation; 4—Lower Ordovician Hongshiya Formation; 5—Middle Cambrian Xiwangmiao Formation; 6—Lower Cambrian Doupuosi Formation; 7—Lower Cambrian Long Wangmiao Formation; 8—Lower Cambrian Canglangpu Formation; 9—Lower Cambrian Qunzhusi Formation; 10—3rd sub-member of the Upper Sinian Dengying Formation; 11—2nd sub-member of the Upper Sinian Dengying Formation; 13—Emeishan Basalt Formation; 14—Regional deep fault; 15—F1 and F2 Fault zone; 16—Orebody; 17—Pb-Zn deposit; 18—Mudstone; 19—Dolomite; 20—Siliceous dolomite; 21—Terrane Boundaries; 22, 23—Attitude of strata; 24—Axis of syncline and anticline; 25—A-B geological profile; 26—Drill hole and its serial number; 27—Adit and its number; 28—Research area; 29—City

图2 乐红铅锌矿床典型的矿石构造

a. 块状构造方解石;b. 块状黄铁矿及白云石;c. 角砾状黄铁矿分布于重晶石中;d~f,h. 块状Pb-Zn矿石;

g. 块状白云石中发育浸染状石英和闪锌矿;i. 块状黄铁矿中发育浸染状白云石

Cc一方解石; Dol一白云石; Py一黄铁矿; Sp-闪锌矿; Gn一方铅矿; Qt一石英

Fig. 2 Typical structure of the Lehong Pb-Zn ore deposit

a. Massive structure calcite; b. Massive structure pyrite and dolomite; c. Brecciated structure pyrite distributed

in the barite; d~f, h. Massive structure lead-zinc ore; g. Disseminated structure quartz and sphalerite distributed

in the massive structure dolomite; i. Disseminated structure dolomite in massive structure pyrite

Cc-Calcite; Dol-Dolomite; Py-Pyrite; Sp-Sphalerite; Gn-Galena; Qt-Quartz

图3 乐红铅锌矿床的典型矿石结构

a,e. 自形粒状结构黄铁矿;b. 方铅矿充填于黄铁矿裂隙中;c. 白云石溶蚀叠加作用于黄铁矿;d. 方铅矿溶蚀包裹黄铁矿;

f. 他形粒状石英;g. 自形粒状石英;h. (浅)红棕色环带状结构闪锌矿(-);i. 闪锌矿环形生长纹(-)

Cc一方解石;Dol一白云石;Py一黄铁矿;Sp一闪锌矿;Gn一方铅矿;(-)一单偏光

Fig. 3 Typical textures under microscope of the Lehong Pb-Zn ore deposit

a,e. Euhedral granular structure pyrite; b. galena filled in the crack of pyrite; c. Pyrite eroded by dolomite; d. Pyrite encased in a lead ore;

f. Anhedral granular texture quartz; g. Euhedral granular texture quartz; h. (Light) red-brown zonal structure sphalerite;

i. Crystal growth grains of the sphalerite (-)

Cc-Calcite; Dol-Dolomite; Py-Pyrite; Sp-Sphalerite; Gn-Galena; (-)-Plainlight

解石进行了详细的包裹体研究。样品磨制成包裹体 片进行详细的流体包裹体岩相学观察,选择有代表 性的包裹体进行显微测温和激光拉曼探针分析。

包裹体显微测温在南京大学内生金属成矿机制 研究国家重点实验室包裹体室进行,采用英国产 Linkam-THMS 600 冷热台,温度适用范围-195~ 600℃,分析精度:-195~30℃时±0.2℃,30~300℃ 时±1℃,300~600℃时±2℃。

包裹体气相成份测试在南京大学内生金属成矿 机制研究国家重点实验室激光拉曼室进行测试,使 用英国产 Renishaw RM-2000 型激光拉曼探针分析 仪。实验条件:温度23°C,Ar离子激光器(514.5 nm),风冷,狭缝宽50 μm,光栅1800,激光束斑大小 约为1 μm,光谱分辨率2 cm⁻¹,1000~4000 cm⁻¹波段 一次取峰,扫描时间30 s。

3 实验结果

3.1 流体包裹体岩相学及显微测温

根据Roedder(1984)和卢焕章等(2004)等对流体

	成矿早期	成	矿期	成矿晚期
矿物类型	重晶石阶段	白云石-黄铁矿-石英阶段	闪锌矿-方铅矿-黄铁矿 阶 段	方解石-重晶石阶段
白云石				
方解石				
重晶石		-		
石英				
自形粒 状黄铁矿				
半自形−他形 粒状黄铁 矿	1			<u>n</u> 1
浅棕红色 色闪锌矿		-	<u>S1</u>	
棕红色 闪锌矿			<u>S2</u>	
棕褐色 闪锌矿			<u>S3</u>	
方铅矿			<u>G1</u> <u>G2</u>	
电型结构−构造	脉状、斑状 构造,他形 粒状结构	细脉-网脉状、浸染状及 斑点-团斑状状构造,他 形-半自形粒状;交代、填 隙结构	网脉状、团块(斑)状及 致密块状构造,他形粒 状、(半)自形粒状、交 代、填隙、包含结构	脉状、团块状 他形-半自形粒 状结构
矿石类型	重晶石-黄铁矿	黄铁矿-少量闪锌矿	方铅矿-闪锌矿矿石	黄铁矿
围岩蚀变	重晶石化及 少量白云石化	白云石化、硅 化及黄铁矿化	白云石化、硅 化及黄铁矿化	方解石、重晶石 化及少量黄铁矿化
注:线条的粗细	代表矿物含量;S1、S	2、S3为不同世代闪锌矿;G1、G2	为不同世代方铅矿。	
° ₽		02m		a
LH76-1	F ∠ LH76-2	LH90	F H78	
, ,	N= 10	0_2 m	••••• • ••	
▲LHr47		LH49	Dm	

表1 乐红矿床成矿阶段划分及矿物生成顺序

图4 乐红铅锌矿床样品采集分布图

a. 1640中断2号穿脉; b. 1640中断20号穿脉; c. 1550中断12-2穿脉; d. 1290中断7号穿脉; e. 1550中断5号穿脉

1—白云石化;2—方解石化;3—重晶石化;4.—黄铁矿化;5—矿体;6—断裂带;7—采样点

Fig. 4 Sampling sites of the Lehong Pb-Zn ore deposit

a. No.2 mine geological record of the 1640 m level adit; b. No.20 mine geological record of the 1640 m level adit; c. NO.12-2 mine geological record of the 1550 m level adit; d. No.7 mine geological record of the 1290 m level adit; e. No.5 mine geological record of the 1550 m level adit

1-Dolomitization; 2-Calcite; 3-Barite; 4-Pyrite; 5-Orebody; 6-Fracture zone; 7-Sampling site

	Table 2	Character	ristics of ore samples in the Leh	long Pb-Zn deposit
样号	岩(矿)石名称	成矿阶段	采样地点	岩(矿)石特征简述
LH-7	白色块状方解石	IV	1550中段南沿12-2出矿口6m处	灰色、灰黑色细晶白云岩,白色粗晶方解石,自形粒 状结构,块状构造,方解石与白云岩接触部位存 在溶蚀边,且局部包含白云岩(图2a)
LH-22	灰白色强黄铁矿化白云石	I + II	1290中段9穿脉于10穿脉之间	灰色具白云石、黄铁矿化细晶白云岩。黄铁矿:主 要的矿石矿物,呈团斑状、团块状分布于白云石 中,脉石矿物为白云石,呈斑团状、浸染状产出 (图 2b)
LH-49	灰白色黄铁矿化重晶石	Ι	1640中段20穿脉21m处	灰白色强黄铁矿化重晶石,黄铁矿:浅铜黄色,角砾 状,呈细粒集合体状分布于重晶石中。重晶石: 灰白色,团块状产出,重晶石颗粒间可见细粒黄 铁矿的分布(图2c)
LH-76-1	棕褐色致密块状闪锌矿	Ш	1690中段左二穿左拉底 8.2 m处	矿石矿物主要为闪锌矿、方铅矿和黄铁矿,闪锌矿: 棕褐色粒状(>90%),致密块状。方铅矿含量较 少,铅灰色,亮金属光泽,多呈浸染状分布于闪 锌矿中。黄铁矿呈浅铜黄色细粒状,大部分呈集 合体产出。此外,可见溶蚀孔洞发育,内见粗粒 状闪锌矿(图2d)
LH-77	棕褐色-红棕色致密块状闪锌矿	Ш	1690 中段左二穿左拉底 25.5 m处	灰色细晶白云岩,矿石矿物为闪锌矿、黄铁矿、方铅 矿,闪锌矿:棕褐色-红棕色,含量最多,致密块 状。方铅矿:铅灰色,亮金属光泽,含量次之,多 呈浸染状。黄铁矿:浅铜黄色,呈细粒浸染状分 布于闪锌矿内。脉石矿物为白云石,乳白色,斑 团状、浸染状分布(图2e)
LH-78	棕褐色致密块状闪锌矿	ш о	1690 甲段左二穿左拉底 28 m 处	灰色细晶白云岩,矿化明显,闪锌矿、黄铁矿、方铅 矿均可见。闪锌矿:棕褐色粗粒状,蜡状-金属光 泽,含量>90%,方铅矿:铅灰色,亮金属光泽,闪锌 矿与方铅矿呈块状、浸染状。可见斑点状铜黄色 细粒黄铁矿分布于闪锌矿及方铅矿内。脉石矿 物主要为:乳白色白云石,团斑状产出,局部包含 溶蚀黄铁矿、闪锌矿、方铅矿(图2f)
LH-81	白色块状白云石	∭ + III	1550中段5穿脉21m处	灰色细晶白云岩,主要矿石矿物为闪锌矿,脉石矿 物为白云石和石英,闪锌矿:浅棕黄色-浅黄色, 星点状产出,白云石:白色,块状产出,内见细脉 状蜡状光泽石英,且与白云石和石英接触部位见 溶蚀港湾(图2g)
LH-90	红棕色致密块状闪锌矿	Ш	1690中段左二穿左拉底16m处	矿石矿物为闪锌矿、黄铁矿和方铅矿,闪锌矿呈红 棕色-浅棕黄色,金属光泽,含量 > 85%,块状构 造。方铅矿:含量次之呈浅灰色,金属光泽,呈斑 点-浸染状分布,黄铁矿含量最少,浅铜黄色,浸 染状产出(图2h)

表2 乐红铅锌矿床主要岩(矿)石样品特征

• .•

注:Ⅰ一重晶石阶段;Ⅱ一白云石-黄铁矿-石英阶段;Ⅲ一闪锌矿-方铅矿-黄铁矿阶段;Ⅳ一方解石-重晶石阶段。

包裹体的划分标准,将乐红铅锌矿流体包裹体划分 为4种主要类型(表3)。其中, II a型包裹体(见下文) 的盐度根据包裹体冷冻法冰点温度-盐度关系表获 得(卢焕章等,2004),或者根据 Bodnar(1993)的冰点

温度-盐度关系方程式计算得到;密度计算采用刘斌 等(1999)的经验公式(D=A+B×T+C×T²)计算。Ⅲ类包 裹体的盐度根据笼合物的熔化温度,使用 Collins (1979)的笼合物的熔化温度-盐度的关系式计算盐

	Table 5 Characteris			ization stages nui	u merusions	in the Lenong	, i b-zh depo	sit
样号	成矿阶段	寄主矿物	包裹体类型	形态	长轴长/µm	分布形态	气相分数/%	资料来源
LH-22	白云石-黄铁矿-石英阶段	白云石	II a	椭圆形,不规则形	1~2	群状	-	本文
LH-81	白云石-黄铁矿-石英阶段	石英	П "	长条形,椭圆形, 不规则形	2~10	孤立状	5~20	本文
LH-49	重晶石阶段	重晶石	${\rm I\!I}_{\rm a} {+} {\rm I\!I}_{\rm b}$	长条形,椭圆形, 不规则形	2~15	孤立状、群状	5~20	本文
LH-81	闪锌矿-方铅矿-黄铁矿阶段	浅棕黄色 闪锌矿	$\begin{array}{c} \mathrm{I} + \mathrm{II}_{a} + \\ \mathrm{II}_{c} + \mathrm{III} \end{array}$	负晶形,长条形, 椭圆形,不规则形	3~30	孤立状、群状、 线状	2~30	本文
LH-78	闪锌矿-方铅矿-黄铁矿阶段	棕红色闪 锌矿	$I + II_{a} + II_{c} + III$	负晶形,长条形, 椭圆形,不规则形	3~30	孤立状、群状、 线状	2~25	本文
LH-90	闪锌矿-方铅矿-黄铁矿阶段	棕红色闪 锌矿	$\begin{array}{c} \mathrm{I} + \mathrm{II}_{a} + \\ \mathrm{II}_{c} + \mathrm{III} \end{array}$	负晶形,长条形, 椭圆形,不规则形	3~30	孤立状、群状、 线状	2~25	本文
LH-77	闪锌矿-方铅矿-黄铁矿阶段	棕褐色闪 锌矿	$\begin{array}{c} \mathrm{I} + \mathrm{II}_{a} + \\ \mathrm{II}_{c} + \mathrm{III} \end{array}$	负晶形,长条形, 椭圆形,不规则形	3~30	孤立状、群状、 线状	2~30	本文
LH-78	闪锌矿-方铅矿-黄铁矿阶段	棕褐色闪 锌矿	$I + II_{a} + II_{c} + III$	负晶形,长条形, 椭圆形,不规则形	3~30	孤立状、群状、 线状	2~30	本文
LH-91	方解石-重晶石阶段	重晶石	II _a	长条形,椭圆形, 不规则形	2~15	群状	5~15	本文
LH-7	方解石-重晶石阶段	方解石	∏ _a +∏ _b		3~8	散点状	5~10	张长青,2005

表3 乐红铅锌矿床不同成矿阶段流体包裹体基本特征

able 3 Characteristics of different mineralization stages fluid inclusions in the Lehong Pb-Zn deposit

度;IV类包裹体的盐度根据子矿物融化温度-盐度关系表获得(卢焕章等,2004)。

I 类气相包裹体 常温下,呈单一气相,见于闪 锌矿中,呈群分布,包裹体大小介于1~8 μm,沿闪锌 矿生长环带定向分布,常见此类包裹体与 II 类包裹 体共生。冷冻过程中,当温度低于三相点温度的时 候,包裹体表面由光滑变为粗糙。

II 类水溶液包裹体 在各类矿物中均最为发育 (图 5a~h),个体变化较大,形态多样,常呈椭圆状、长 条形、负晶形及不规则状沿闪锌矿的生长环带成群 或串珠状分布,较大者呈孤立状分布。根据相态和 成分不同可以进一步划分为3个亚类。其中,II a 型,富液相气液两相包裹体,气相成分为水蒸汽,通 常呈孤立状或群状分布,与 I 类包裹体共生。气相 分数通常小于20%,偶见充填度较大的,可达30%, 包裹体大小多集中在5~10 μm。

Ⅱb型富气相气液两相包裹体(图5a)重晶石中 可见,相对于Ⅱa型较少,气相成分为水蒸汽,气相分 数大于80%,大小介于4~8 μm之间,与富液相气液 两相包裹体共生。

Ⅱc型纯液相包裹体(图5g)室温下未见气相和

液相成分,包裹体通常较小,集中在6~8 µm,数量也 相对较少。

Ⅲ类含CO₂三相包裹体 常温下可见典型"双眼 皮"特征,此类包裹体数量比较少,由L_{H2}O、V_{CO2}及 L_{CO2}组成,个体大小为10~30 µm,CO2相气液比小于 20%,呈椭圆形、负晶形及不规则形状,呈孤立状、线 状分布于S1、S2世代的闪锌矿中(图5j、k)。包裹体 初溶温度范围在-56.5~-56 ℃,接近并略低于CO2标 样标准值-56.6 ℃,反映了主要成分为CO2,CO2相部 分均一至液相,完全均一至液相。

IV 类含子矿物多相包裹体 寄主矿物为闪锌矿, 较少见,常温下气相、液相和固相共存,与气液两 相、气相包裹体共生现象明显。包裹体的大小为 5~7 µm,气相分数为10%;升温过程中,气泡早于 子矿物消失,且前后温差为30°左右,气泡消失温 度为172℃,氯化钠子矿物融化温度为207.5℃,其 w(NaCl_{en})为32.87%。

3.2 流体包裹体显微测温

重晶石阶段 重晶石中发育大量成群分布的 Ⅱ a+Ⅱ b型包裹体,包裹体均一温度介于240.3~ 319.3℃之间,均值为281.6℃,主要峰值为280~

图 5 乐红铅锌矿床主成矿阶段流体包裹体显微照片 a~c. 重晶石中的流体包裹体(-);d. 石英中的流体包裹体(-);e. S1世代闪锌矿中的流体包裹体(-);f.g. S2世代闪锌矿中的

流体包裹体(-);h~l. S3世代闪锌矿中的流体包裹体(-);m、n. 闪锌矿中含CO2三相包裹体(-)

(-)一单偏光; V一气相; L一液相; S一子晶

Fig. 5 Microphotographs of fluid inclusions formed in major metallogenic stage in the Lehong lead-zinc deposit

a~c. Fluid inclusions in the barite (-); d. Fluid inclusions in the quartz (-); e. Fluid inclusion in the S1 generation sphalerite (-);

f,g. Fluid inclusion in the S2 generation sphalerite (-); h~l. Fluid inclusion in the S3 generation sphalerite (-);

m,n. $V_{CO_2}+L_{CO_2}+L_{H_2O}$ three-phase inclusions in sphalerite (–) (–)—Plainlight; V—Vapor phase; L—Liquid phase; S—Daughter mineral

300℃,显示了中-高温流体性质,明显区别于其他阶段均一温度特征;w(NaCl_{eq})分布区间为2.24%~10.73%,峰值集中在4%~6%,均值为6.28%;密度为0.73~0.89 g/cm³,峰值0.8~0.85 g/cm³,均值0.81 g/cm³。该阶段显示为中高温-中低盐度-中低密度流体性质(表4)。

自云石-黄铁矿-石英阶段 该阶段发育成群分 布的Ⅱa型包裹体,主要寄存于白云石中,普遍较小 (±1 μm),显微镜下难以观测,故未对该阶段进行显微 测温。通过对石英中流体包裹体显微测温得到其均 一温度分布区间为219.8~310.1℃,均值为266.7℃,峰 值为280~300℃;冰点温度为-4.7~-13.8℃,w (NaCl_{eq})为7.02%~17.61%,峰值集中在16%~18%;密 度为0.87~1.05 g/cm³,峰值0.95~1.0 g/cm³,均值0.96 g/cm³。该阶段成矿流体具有中温-中高盐度-中低密 度流体特征(表4)。

闪锌矿-方铅矿-黄铁矿阶段 该阶段不同世代 闪锌矿、白云石中发育 [+]] a+]] b+]] c+]] +]] 型包 裹体,Ⅱa型包裹体占总数的85%及以上,为主要的 研究对象。S1闪锌矿均一温度分布区间为217.8~ 292.2℃,均值为255.1℃,主要峰值为260~280℃;冰 点温度为-5.7~-12.8℃, w(NaClea)为8.81%~16.71%, 峰值为14%~16%;密度为0.49~1.03g/cm³,峰值 0.95~1.0 g/cm3,均值0.93 g/cm3,显示 S1阶段成矿流 体具有中温-中盐度的流体性质;S2闪锌矿均一温度 介于 180.2~241.3℃,均值为 210.3℃,主要峰值为 200~220℃;冰点温度为-4.9~-14.8℃,w(NaClea)为 7.73%~18.47%,峰值为14%~16%;密度为0.90~0.97 g/cm3,峰值0.9~0.95 g/cm3,均值0.92 g/cm3,显示S2 阶段成矿流体具有中温-中盐度的流体性质;S3闪锌 矿均一温度介于140.4~227.4℃,均值为181.3℃,主 要峰值为160~180℃;冰点温度为-0.2~-15.7℃, w(NaClea)为0.35%~19.21%,峰值为12%~14%;密度为 0.91~1.06 g/cm³,峰值0.95~1.0 g/cm³,均值0.97 g/cm³, 显示 S3 阶段成矿流体具有低温-中盐度的性质。此 阶段Ⅲ类包裹体初融温度为-57.7~-56.5℃,反映了

其主要成分为CO₂,该类型包裹体以均一至液相为 主,均一温度变化范围为197.5~231.5℃,温度峰值主 要集中于200~220℃之间,均值为211.75℃,根据 CO₂笼合物分解温度计算水溶液w(NaCl_{eq})为 13.07%~21.03%,流体性质为中低温-高盐度。显微 测温结果表明该阶段的成矿温度为中-高温,与闪锌 矿-方铅矿硫同位素平衡温度(238~250℃)基本一致 (笔者未发表资料)。其中,该阶段闪锌矿中Ⅱa、Ⅱc、 Ⅲ、Ⅳ型包裹体共存,同一视域内Ⅱa型(均一温度为 214.5℃)与Ⅳ型(均一温度为207.5℃)包裹体具有相 对一致的均一温度,表明该阶段流体可能发生了沸 腾作用(表4,图5j)。

综上所述,常温下闪锌矿-方铅矿-黄铁矿阶段含 子矿物包裹体与气液两相、气相包裹体共生现象明 显(图5f、i~j),此外,重晶石阶段流体的w(NaCl_{eq})峰 值为4%~6%,而在白云石-黄铁矿-石英阶段流体盐 度的峰值w(NaCl_{eq})陡增至16%~18%,但是,它们的 均一温度均值分别为281.6℃和266.7℃。在很小的 温度区间内流体盐度明显的变化为流体沸腾作用提 供了证据。通过显微测温研究,含子矿物多相包裹 体在升温过程中,气泡早于子矿物消失,且前后温差 为30℃左右,气泡消失温度为172℃,氯化钠子矿物 融化温度为207.5℃。这些特征表明流体可能发生 沸腾作用。

方解石阶段 方解石中流体包裹体均一温度 均值为165.3℃,冰点温度为-7.65℃,盐度w(NaCl_{eq}) 为11.28%(张长青,2005),具低温-中等盐度性 质(表4)。

通过对乐红铅锌矿床闪锌矿、石英、方解石及重 晶石流体包裹体测温研究,显示随时间的推移,成矿 流体温度呈现中高温-中温-中低温-低温的演化趋 势;盐度由中低盐度-中(高)盐度-中低盐度的演化趋 势。其中,从S1世代至S3世代闪锌矿流体包裹体显 示,闪锌矿-方铅矿-黄铁矿阶段成矿流体由中温逐渐 转变为中低温度,盐度由中高盐度逐渐转变为中低 盐度(图6)。 第37卷第5期

			5											
日本	太士矿栖	时 对于 [公 [17] [五] [五]	白車林米小		$t_{ m m,ice}^{ m o}$ C	7)		$t_{\rm h}/^{\rm o}{\rm C}$		$w({ m NaCl}_{ m eq})$	0%	密度/(g/c	m³)	<u> </u>
4+ 1- 1-	可士》 剡	成地 即长心 初世八	EL & FF XV	⁴ m ³ CO2	范围	平均值	^t m,clath ^t h,CO2	范围	平均值	范围	均值	范围	均值	贝什不够
LH-81	石英	白云石-黄铁矿-石英阶段	31	Î	-4.7~-13.8	-10.1		219.8~310.1	266.7	7.02~17.61	13.82	0.87~1.05	0.96	
LH-81	闪锌矿	S3世代	14	°	-1.2~-6.3	-2.79		106.8~210.3	149.2	2.07~11.05	6.77	0.90~0.98	0.95	
		S1世代	20		-12.8~-5.7	-10.2		217.8~274.5	247.5	8.8.1~16.71	13.91	0.90~0.97	0.93	
<i>LL</i> 11	11 年立 五亡	S2世代	42	1	-14.8~-4.9	-10.2		189.5~245.2	212.6	7.73~21.03	14.24	0.91~1.06	0.96	
-U-U1	内圩利	S2世代	8	-56.5~-56.1		I	-8.8~2.1 27.1~30.5	197.5~231.5	211.7	13.07~21.03	16.89	I	I	
		S3世代	28		-14.7~-3.4	-8.6	ł	157.2~206.5	184.7	5.56~17.17	14.24	0.93~1.03	0.97	
		S1世代	18		-12.3~-9.6	-10.9	21	228.3~292.2	262.7	13.51~16.24	14.83	0.90~0.95	0.92	
LH-78	闪锌矿	S2世代	15		-14.9~-5.7	6.6-		180.9~231.3	205.7	8.81~18.55	13.62	0.92~1.06	0.97	本文
		S3世代	13		-12.3~-9.6	-10.9		137.6~224.7	176.6	13.51~16.24	14.83	0.90~0.95	0.92	
		S1世代	5		$-11.3 \sim -10.1$	-10.7	0	228.5~278.3	261.3	14.04~15.27	14.65	0.91	0.91	
	아파 쇼작 자꾸	S2世代	24		-11.2~-9.3	-10.2	- C	162.4~278.3	214.2	13.18~15.17	14.13	0.96~0.99	0.98	
ГН-90	闪转机	S2世代	2	-56.5~-56.3			0.7~1.1 24.1~27.3	198.5~216.7	207.6	14.29~14.76	14.53	I	I	
		S3世代	15		-0.2~-15.7	-7.45		137.6~224.7	176.6	0.35~19.21	10.52	0.88~1.01	0.97	
LH-49	早期重晶石	重晶石阶段	16		-7.2~-1.3	-5.5		240.3~319.3	281.7	$2.24 \sim 10.73$	6.28	0.73~0.89	0.81	
LH-91	晚期重晶石	方解石-重晶石阶段	36		-13.3~-3.8	-6.4		113.9~210.3	146.1	6.16~17.17	10.97	0.79~1.03	0.94	
Lh-7	方解石	方解石-重晶石阶段	I		I	-7.7		I	165.3	I	11.28	I	0.98 Ē	张长青,2005
注: $t_{m,ice}$ 一	冰点温度;t _m c	co2—CO2初融温度;t _{m.clath} —	笼合物熔化测	腽度;t _{h.co2-co2} 剖	(分均一温度;	t _h 一完全共	匀一温度;S1、S2、S3	为闪锌矿-方铅	矿-黄铁矾	矿阶段闪锌矿	的不同1	吐代。		

表4 乐红铅锌矿床流体包裹体测温结果

Table 4 Results of temperature measurement of fluid inclusions in the Lehong Pb-Zn deposit

1029

Fig. 6 Histograms of homogenization temperature, salinity, densities and homogenization temperatures versus salinities of fluid inclusion in the Lehong Pb-Zn ore deposit

a. Histograms of homogenization temperature; b. Histograms of salinity; c. Histograms of densities;

d. Homogenization temperatures versus salinities of fluid inclusions

1,7-S1 generation sphalerite; 2,8-S2 generation sphalerite; 3,9-S3 generation sphalerite; 4,10-Quartz;

5,11-Barite in late stage ; 6,12-Barite in early stage ; 13-Evolutionary trend of the ore-forming fluid

3.3 流体包裹体气相成分

通过对单个包裹体的激光拉曼探针分析和气相 色谱分析得到流体包裹体气相成分。因为激光拉曼成 分分析要求包裹体中气相部分占较大比例且状态稳 定,但乐红Pb-Zn矿流体包裹体气相充填度都很小,且 气泡多出现跳动现象,加之闪锌矿背景值相对较高,所 以本次测试仅分别获得脉状白云石-黄铁矿-石英阶 段、S2和S3世代闪锌矿三相不混溶包裹体(图7)及斑状-脉状重晶石阶段3个阶段部分数据以作参考。

流体包裹体气相成分主要为H₂O,其次为CO₂, 各阶段液相水峰较明显,揭示闪锌矿流体包裹体中 的盐度为中高盐度的特征(图7)。

3.4 成矿压力和成矿深度估算

当流体包裹体捕获时处于不混溶体系,就可以

16000

14000

a

12000

10000

CO,

e. 石英中含CO2包裹体气相成分;f. 石英包裹体液相成分

Fig. 7 Laser Raman spectra of fluid inclusions of the Lehong Pb-Zn deposit

a,b.Gas phase composition of $V_{co_2} + L_{co_2} + L_{H_{2O}}$ three-phase inclusions in different generations of sphalerite; c. Liquid phase composition of sphalerite; d. Liquid phase composition of barite; e. Gas phase composition of $V_{CO_2}+L_{CO_2}+L_{H_2O_3}$

three-phase inclusions in different generations of quartz; f. Liquid phase composition of quartz

估算流体包裹体捕获时的压力(Roedder, 1984; 2003; Brown et al., 1995)。对于沸腾体系下形成的不混溶 三相(L_{H₀0}+L_{co}+V_{co})包裹体,是在气液分界面之上 和体系处于减压条件下所捕获,它们的压力就等于 蒸汽压,并且相当于静水压力或静岩压力(张振亮, 2006)。判断流体不混溶作用需满足:①含子晶高盐 度包裹体与富气相包裹体共存;②高盐度包裹体中 子晶晚于气泡消失;③2种包裹体具有较为一致的 均一温度(Baker et al.,2003)。通过岩相学和显微测 温研究,含子矿物多相包裹体在升温过程中,气泡早 于子矿物消失,且前后温差为30℃左右,气泡消失温 度为172℃,氯化钠子矿物融化温度为207.5℃;常温 下含子矿物包裹体与气液两相、气相包裹体共生现象明显(图5i、j),以上特征均表明流体发生不混溶现象,因此可以用来估计成矿深度。本文通过溶液等容线图(Roedder,1984)进行估算得出乐红铅锌矿床流体压力为45~74.9 MPa,平均为58.2 MPa。

按照静岩压力计算结果,按地面向下27 MPa增压 率计算,对成矿深度进行估算,估算结果显示矿床的成 矿深度约为1.7~2.8 km,由此可见其成矿深度较深。

4 讨 论

4.1 成矿流体性质及演化

总体而言,该矿床流体包裹体均一温度范围为 106.8~319.3℃,峰值为200~220℃,与典型MVT铅锌 矿床成矿温度(大多数介于75~150℃)存在较明显的 差别(Basuki, 2002; Basuki et al., 2009)。典型的 MVT 矿床大致的盐度 w(NaClea)范围为 15%~30%(Basuki et al., 2003), 而本文获得的成矿流体 w(Na-Clea)峰值集中于12%~16%。激光拉曼光谱分析发现 流体包裹体主要成分为H2O,其次为CO2。矿区大量 发育碳酸盐化现象,常见溶蚀不完全呈现的"角砾 状"的热液白云石,白云石与黄铁矿共生现象明显, 这些都是酸性热液流体与碳酸盐围岩化学反应的结 果(Corbella et al., 2004),表明热液流体中可能含有 大量的Ca²⁺、Mg²⁺等阳离子。在热液白云石内部及 与碳酸盐岩围岩的接触部位见脉状黄铁矿,说明成 矿热液中含有大量的Fe²⁺。前人对川滇黔矿集区内 其他铅锌矿床流体包裹体成分分析表明,成矿流体 具有较高的K+、Na+、Ca²⁺、Mg²⁺、F-、Cl-等离子,且 Cl⁻ > SO² -(张振亮,2006; Zhou et al.,2001; Han et al., 2007).

不同矿物中流体包裹体大量发育,纯气相(V)、 纯液相(L)、富液相气液两相(L+V)、富气相气液两 相(L+V)及含子矿物三相(L+V+S)包裹体,并且在 闪锌矿中发现大量含三相(L_{co2}+L_{H2}o+V_{co2})包裹体, 但并未发现有机包裹体。通过这些包裹体的测温也 证实流体沸腾作用的存在,详见前文所述。不同成 矿阶段的包裹体温度大致反映了该矿床成矿流体从 早阶段至晚阶段,温度呈现中高温-中温-中低温的演 化趋势;盐度由中低盐度-中等盐度的演化趋势。通 过含 CO2三相包裹体成矿压力计算发现,该矿床的 成矿深度大约为1.7~2.8 km,这与滇东北矿集区其他 铅锌矿床的研究结果是基本一致的。

矿化-蚀变分带特征与流体包裹体特征有一定 的对应关系,自矿化中心带(均一温度最高达 292.2℃)→矿化过渡带(均一温度峰值为180~ 200℃),矿化蚀变依次减弱的同时,流体包裹体由大 逐渐变小,温度由中高温逐渐变为中温,盐度由中高 盐度转变为中低盐度的特征。尽管未能获得矿化边 缘带内矿化蚀变岩流体包裹体的相关参数,但基本 可以根据前2个蚀变带中流体特征,推测该带成矿

Fig. 8 Mineralization - alternation zoning and the model of fluid evolution

1—Lower and Middle Ordovician; 2—Upper Sinian Dengying Formation; 3—Boundary of the alteration zone; 4—Location and observation of geological mapping section; 5—Marginal mineralization

zone; 6-Transitional mineralization zone;

7-Central mineralization zone; 8-F₂ fault

流体具有中低温-中低盐度-中等密度的性质(图8)。 此外,各蚀变带之间存在等温线变化趋势,而断裂西 盘的矿化带,尤其是靠近层间断裂带位置,可能为成 矿流体的冷却中心。

4.2 成矿过程探讨

在印支期,该区毗邻的龙门山在诺利早期开始 隆升,并伴随强烈的造山作用。同时,哀牢山地区 于印支期开始隆升造山,也使扬子地块西南缘岩相 古地理格局发生变化(韩润生等,2014)。该期造山 事件诱发形成断褶构造带(韩润生等,2012),伴随 着区域上大规模的斜冲推覆活动,形成含CO₂-中 高温(240.3~319.3℃)-中低盐度(w(NaCl_{eq})为 2.24%~10.73%)深部流体,其包裹体为富液相气液 两相、富气相气液两相,以富液相气液两相为主。 深部流体在热动力和构造动力驱动下,沿区域深大 断裂发生大规模的运移,在其运移过程中不断淋滤 萃取中元古界基底岩石或沉积盖层中的成矿元素 (韩润生等,2006),由于早阶段流体的盐度相对较 低,未能形成铅锌矿化,仅形成了重晶石和白云石 的矿物组合。

自云石-黄铁矿-石英阶段在乐红矿区受乐红 构造影响富含Ca²⁺、Mg²⁺等离子及CO₂的中高温、 中低盐度(w(NaCl_{eq}) < 10.73%)酸性流体发生减压 沸腾作用,流体温度降低(219.8~310.1℃之间)、盐 度升高(w(NaCl_{eq})介于7.02%~17.61%),形成纯液 相包裹体、纯气相包裹体、富液相气液两相包裹体 和含CO₂的三相包裹体。该阶段流体沿围岩裂隙 "贯人"形成团块状-网脉状-脉状白云石化,围岩受 成矿流体蚀变及热烘烤作用,硅质白云岩重结晶同 时其硅质成分也发生聚集形成颗粒状石英,局部在 裂隙中形成细脉状石英。空间上形成白云石、黄铁 矿、石英及闪锌矿共生的现象。

闪锌矿-方铅矿-黄铁矿阶段含CO₂的中-高 温流体岩乐红-小河断裂上升,减压沸腾作用增强 的同时,流体与大气降水发生混合导致其温度减小 (均值240°C)、盐度降低($w(NaCl_{eq})$ 峰值为14%~ 16%),在适合的物化条件下,流体中的Pb²⁺、Zn²⁺、 Ca²⁺、Mg²⁺的络合物发生卸载,引起铅锌硫化物在 乐红断裂及旁侧围岩溶蚀孔洞形成透镜状、脉状及 块状矿体,该阶段纯液相包裹体、纯气相包裹体、富 液相气液两相包裹体和含CO₂的三相包裹体,且含 CO₂的三相包裹体数量明显增多。

方解石阶段 流体沿断裂带继续向上运移过程

中,成矿压力变小,使得热液蚀变相对减弱,并与大 气降水进一步混合,其盐度和温度进一步减小,pH 值逐渐升高,在空间上只形成斑点状、细脉状的热 液白云石化、方解石化及重晶石蚀变体。这一结论 为深化"构造-流体'贯入'成矿"模型(韩润生等, 2012)提供了重要证据。

5 结 论

(1) 流体包裹体类型包括气液两相(L_{H_2O} + V_{H_2O})、纯气相(V_{H_2O})、纯液相(L_{H_2O})、含CO₂不混溶 流体包裹体(V_{CO_2} + L_{CO_2} + L_{H_2O})和含子矿物三相包裹 体(L_{H_2O} + V_{H_2O} +S)。气相成分中含H₂O、CO₂,未检测 出有机气体。

(2)流体包裹体显微测温结果表明成矿流体具
中温(峰值200~220℃)、中-高盐度(峰值w(NaCl_{eq})为
12%~16%)和富CO₂的特点。利用含CO₂三相包裹
体估算成矿压力为45~74.9 MPa,成矿深度为1.7~
2.8 km。

(3)从成矿早阶段到晚阶段,成矿流体的演化 过程为:中温-中低盐度→中低温-中高盐度→低温-中低盐度。其中,S1、S2、S3闪锌矿流体包裹体特征 表明,主成矿阶段温度由中高温逐渐转变为中低温 度,盐度由中高盐度逐渐转变为中低盐度。

(4) 在热动力和构造应力驱动下,流体发生大 规模运移,盆地流体萃取基底地层的成矿元素,在构 造薄弱带发生沸腾作用和中和反应,导致铅锌硫化 物沉淀,最终形成了乐红铅锌矿床。这一结论为深 化"构造-流体'贯入'成矿"模型提供了重要的证据, 亦对该矿床成矿条件、成矿机制的认识,进而对指导 找矿预测也具有重要的指导意义。

志 谢 在实验期间得到了南京大学倪培教授、丁俊英老师的无私帮助;审稿专家对论文初稿进行审阅,并提出了许多宝贵意见,在此一并表示衷心的感谢!

References

Baker T and Lang J R. 2003. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: An example from the Bismark deposit, Mexico[J]. Mineralium Deposita, 38(4):474-495.

- Basuki N I. 2002. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits: Identifying thresholds for metal transport[J]. Exploration & Mining Geology, 11(1-4):1-17.
- Basuki N I and Spooner E T C. 2009. Post-Early Cretaceous Mississippi Valley-type Zn-Pb mineralization in the Bongara area, northern Peru: Fluid evolution and paleo flow from fluid inclusion evidence[J]. Exploration & Mining Geology, 18(1):25-39.
- Bodnar R J. 1993. Revised equation and table for determining the freezing-point depression of H₂O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57(3):683-684.
- Brown P E and Hagemann S G. 1995. Mac Flin Cor and its application to fluids in Archean lode-gold deposits[J]. Geochimica et Cosmochimica Acta, 59(19):3943-3952.
- Candela P A and Holland H D. 1986.A mass transfer model for copper and molybdenum in magmatic hydrothermal systems; the origin of porphyry-type ore deposits[J]. Econ. Geol., 81(1): 1-19.
- Collins P L F. 1979. Gas hydrates of CO₂-bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Econ. Geol., 74(6):1435-1444.
- Corbella M, Ayora C and Cardellach E. 2004. Hydrothermal mixing carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits[J]. Mineralium Deposita, 39:344-357.
- Ding D S. 2007. Establishment of ore-prospecting model for Yunnan Lehong Pb-Zn deposit and the significance[J]. Nonferrous Metals Design, 34 (2): 11-20 (in Chinese with English abstract).
- Han R S, Chen J, Huang Z L, Ma D Y, Xue C D, Li Y, Zou H J, Li B, Hu Y Z, Ma G S, Huang D Y and Wang X K. 2006. Dynamics of teceonic ore-forming processes and localization-prognosis of concealed orebodies-As exemplified by the Huize super-large Zn-Pb-(Ag-Ge) district, Yunnan[M]. Beijing: Science Press. 49-79 (in Chinese with English abstract).
- Han R S, Liu C Q, Huang Z L, Chen J, Ma D Y, Lei L and Ma G S. 2007. Geological features and origin of the Huize carbonatehosted Zn-Pb-(Ag) district, Yunnan, South China[J]. Ore Geology Reviews, 31(1):360–383.
- Han R S, Zou H J, Hu B, Hu Y Z and Xue C D. 2007. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge) deposit, Yunnan, China[J]. Acta Petrologica Sinica, 23(9): 2109-2118. (in Chinese with English abstract).
- Han R S, Liu C Q, Carranza E J M, Hou B, Huang Z L , Wang X K, Hu

Y Z and Lei L.2012. Ree geochemistry of altered tectonites in the huize base-metal district, Yunnan, China[J]. Geochemistry Exploration Environment Analysis, 12(2): 127-146.

- Han R S, Hu Y Z, Wang X K, Huang Z L, Chen J, Wang F, Wu P, Li B, Wang H J, Dong Y and Lei L. 2012. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan, China[J]. Acta Geologica Sinica, 86(2): 280 –294 (in Chinese with English abstract).
- Han R S, Wang F, Hu Y Z, Wang X K; Ren T, Qiu W L and Zhong K
 H. 2014. Metallogenic tectonic dynamics and chronology constrains on the Huize-type (HZT) Germanium-rich silver-zinclead deposits[J]. Geotectonica et Metallogenia, 38(4):758-768 (in Chinese with English abstract).
- Han R S, Chen J, Wang F, Wang X K and Li Y. 2015. Analysis of metal-element association halos within fault zones for the exploration of concealed ore-bodies: A case study of the Qilinchang Zn-Pb - (Ag-Ge) deposit in the Huize mine district, northeastern Yunnan, China[J]. Journal of Geochemical Exploration, 159(11): 62-78 (in Chinese with English abstract).
- Han R S, Li B, Ni P, Qiu W L, Wang X D and Wang T G. 2016.
 Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of Huize super-large Zn-Pb-(Ge-Ag) deposit, Yunnan Province[J]. Journal of Jilin University(Earth Science Edition), 46(1): 91-104 (in Chinese with English abstract).
- Hu Y G. 2000. Occurrence of silver, sources of mineralized substances and ore-forming mechanism of Yinchangpo silver polymetallic deposit, Guizhou Province, China (Ph.D. Thesis) [D]. Tutor: Tu G C and Li C Y. Guiyang: Institute of Geochemistry Chinese Academy of Sciences. 1-50 (in Chinese with English abstract).
- Huang D H. 2000. Mineralogical character of hemimorphite from the oxidized zone of the Lehong Pb-Zn deposit in Yunnan Province and its significance[J]. Acta Petrologica et Mineralogica, 19(4): 349-353 (in Chinese with English abstract).
- Huang Z L, LI W B, Chen J, Xu D R, Han R S and Liu C Q. 2004. Carbon and oxygen isotope geochemistry of the Huize superlarge Pb-Zn ore deposits in Yunnan Province[J]. Geotectonica et Metallogenia, 28(1):53-59 (in Chinese with English abstract).
- Li B. 2010. The study of fluid inclusions geochemistry and tectonic geochemistry of lead-zinc deposits: Taking Huize and Songliang lead-zinc deposits for examples, in the northeast of Yunnan Province, China (Ph.D. Thesis) [D]. Tutor: Han R S. Kunming : Kunming University of Science and Technology. 62-113 (in

1035

Chinese with English abstract).

- Li W B, Huang Z L and Zhang G. 2006. Sources of the ore metals of the Huize ore field in Yunnan Province: Constraints from Pb,S,C, H,O and Sr isotope geochemistry[J]. Acta Petrologica Sinica,22 (10):2567-2580 (in Chinese with English abstract).
- Liu B and Shen K. 1999. The rmodynamics of fluid inclusion[M]. Beijing: Geological Publishing House. 1-290 (in Chinese).
- Liu H C and Lin W D. 1999. Study on the law of Pb-Zn-Ag ore deposits in northeast Yunnan, China[M]. Kunming: Yunnan University Press. 1-468 (in Chinese with English abstract).
- Lu H Z, Fan H R, Ni P, Ou G X, Shen K and Zhang W H. 2004. Fluid inclusions[M]. Beijing: Science Press. 205-240 (in Chinese).
- Qiu W L. 2013. Study on fluid geochemistry in Zhaotong lead-zinc deposit, Yunnan (Master's Thesis) [D]. Tutor: Han R S. Kunming: Kunming University of Science and Technology. 1-50 (in Chinese with English abstract).
- Roedder E. 1984. Fluid inclusions [M]. Mineralogical Society of America, 12:10-644.
- Roedder E A and Bodnar R J. 2003. Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth & Planetary Sciences, 8(1):263-301.
- Si R J. 2006. Ore deposit geochemistry of the Fule dispersed elementploymetallic deposit, Yunnan Province (Ph. D. Thesis) [D]. Tutor; Gu X X. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. 35-93 (in Chinese with English abstract).
- Wang J Z, Li Z Q and Ni S J. 2003. Origin of ore-forming fluids of Mississippi Valley-Type (MVT) Pb-Zn deposits in Kangdian area, China[J]. Chinese Journal of Geochemistry, 22(4):369-376.
- Zhang C Q. 2005. Distribution, characteristics and genesis of Mississippi Valley-type lead-zinc deposits in the triangle of Sichuan-Yunnan-Guizhou Provinces (Master's Thesis) [D]. Tutor: Mao J W. Beijing: China University of Geosciences. 50-80 (in Chinese with English abstract).
- Zhang C Q, Mao J W, Wu S P, Li H M, Liu F, Gao B J and Gao D R. 2005. Distribution, characteristics and genesis of Mississippi Valley-Type lead-zinc deposits in Sichuan Yunnan Guizhou area[J]. Mineral Deposits, 24(3): 336-350 (in Chinese with English abstract).
- Zhang Y X, Wu Y, Tian G, Shen L, Zhou Y M, Dong W W, Zeng R, Yang X C and Zhang C Q. 2014. Mineralization age and the source of ore-forming material at Lehong Pb-Zn deposit, Yunnan Province: Constraints from Rb-Sr and S isotopes system[J]. Acta

Mineralogica Sinica, 34(3): 305-311 (in Chinese with English abstract).

- Zhang Z L. 2006. Feature and sources of ore-forming fluid in the Huize lead-zinc ore deposits, Yunnan Province, China: Evidence from fluid inclusion and water-rock reaction experiments (Ph. D. Thesis) [D]. Tutor: Huang Z L. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. 21-31, 66-108 (in Chinese with English abstract).
- Zhou C X, Wei C S and Guo J Y. 2001. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China: Pb-Sr isotope constraints[J]. Econ. Geol., 96(3):583-598.
- Zhou J X, Huang Z L, Gao J G and Wang T. 2012. Sources of oreforming metals and fluids, and mechanism of mineralization, Maozu large carbonate-hosted lead-zinc deposit, northeast Yunnan Province[J]. Journal of Mineralogy & Petrology, 32(3):62–69.
- Zhou J X, Huang Z L and Yan Z F. 2013. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age[J]. Journal of Asian Earth Sciences, 73(1):39-47.
- Zhou Y M. 2003. Geological characteristics of the Le-hong lead-zinc deposit in Northeastern Yunnan and its ore-search prospects[J].
 Geology-geochemistry, 31(4): 16-21 (in Chinese with English abstract).

附中文参考文献

- 丁德生.2007.乐红铅锌矿床综合找矿模型的建立及重要性[J].有色 金属设计,31(2):11-20.
- 韩润生,陈进,黄智龙,马德云,薛传东,李元,邹海俊,李波,胡煜昭,马更 生,黄德镛,王学焜.2006.构造成矿动力学及隐伏矿定位预测—— 以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版 社.49-79.
- 韩润生, 邹海俊, 胡彬, 胡煜昭,薛传东. 2007. 云南毛坪铅锌(银、锗) 矿床流体包裹体特征及成矿流体来源[J]. 岩石学报, 23(9): 2109-2118.
- 韩润生,胡煜昭,王学琨,黄智龙,陈进,王峰,吴鹏,李波,王洪江,董英,雷 丽.2012. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学 报, 86(2): 280-294.
- 韩润生,王峰,胡煜昭,王学焜,任涛,邱文龙,钟康惠.2014. 会泽型 (HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J]. 大地构造与成矿,38(4):758-768.

韩润生,李波,倪培,邱文龙,王旭东,王天刚.2016.闪锌矿流体包裹

体显微红外测温及其矿床成因意义——以云南会泽超大型富 锗银铅锌矿床为例[J]. 吉林大学学报:地球科学版, (1):91-104.

- 胡耀国.2000.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来 源与成矿机制(博士论文)[D].导师:涂光帜,李朝阳.贵阳:中国 科学院地球化学研究所.1-50.
- 黄典豪.2000.云南乐红铅锌矿床氧化带中异极矿的矿物学特征及 其意义[J].岩石矿物学杂志,19(4):349-353.
- 黄智龙,李文博,陈进,许德如,韩润生,刘丛强.2004.云南会泽超大型铅锌矿床C、O同位素地球化学[J].大地构造与成矿学,28(1):53-59.
- 李波.2010. 滇东北地区会泽、松梁铅锌矿床流体地球化学与构造地 球化学研究(博士论文)[D]. 导师:韩润生. 昆明:昆明理工大学. 62-113.
- 李文博,黄智龙,张冠. 2006. 云南会泽铅锌矿田成矿物质来源: Pb、S、 C、H、O、Sr同位素制约[J]. 岩石学报, 22(10):2567-2580.

刘斌,沈昆.1999.流体包裹体热力学[M].北京:地质出版社.1-290.

- 柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M]. 昆明:云南大 学出版社.1-39,256-257.
- 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文槐. 2004. 流体包裹体[M]. 北 京: 科学出版社. 205-240.

- 邱文龙.2013. 云南昭通铅锌矿床流体地球化学研究(硕士论文)[D]. 导师:韩润生.昆明:昆明理工大学.1-50.
- 司荣军.2006.云南省富乐分散元素多金属矿床地球化学研究(博士 论文)[D].导师:顾雪祥.贵阳:中国科学院研究生院.35-93.
- 张云新,吴越,田广,申亮,周云满,董文伟,曾荣,杨兴潮,张长青.2014. 云南乐红铅锌矿床成矿时代与成矿物质来源:Rb-Sr和S同位 素制约[J].矿物学报,34(3):305-311.
- 张长青.2005.川滇黔地区MVT铅锌矿床分布、特征及成因研究(硕 士论文)[D].导师:毛景文.北京:中国地质大学.50-80.
- 张长青,毛景文,吴锁平,李厚民,刘峰,郭保健,高德荣.2005.川滇黔地区 MVT 铅锌矿床分布、特征及成因[J]. 矿床地质, 24(3): 336-350.
- 张振亮.2006.云南会泽铅锌矿床成矿流体性质和来源——来自流体包裹体和水岩反应实验的证据(博士论文)[D].导师:黄智龙. 贵阳:中国科学院研究生院(地球化学研究所).21-31,66-108.
- 周家喜,黄智龙,高建国,王涛.2012.滇东北茂租大型铅锌矿床成矿物 质来源及成矿机制[J].矿物岩石,32(3):62-69.
- 周云满.2003. 滇东北乐红铅锌矿床地质特征及找矿远景[J]. 地质地 球化学, 31(4):16-21.