en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
目录contents

    摘要

    还原性矽卡岩型金矿以独立金矿形式赋存于钙质沉积岩中,以金品位高(5~15 g/t)著称。目前,该类型金矿的总体研究程度较低,在成矿背景、还原性岩浆源区及成因、金高效富集机制等方面仍缺乏理解。笔者对该类型金矿的地质特征、时空分布规律、成矿机理、找矿标识等方面进行了系统梳理,探讨了该类金矿的研究难点及其在中国的成矿潜力和找矿前景。还原性矽卡岩型金矿具有以下特征:①独特的Au-Bi-Te-As±Co元素组合,缺乏Cu等贱金属;②矽卡岩以钙铁辉石为主,其次为石榴子石;③成矿岩体属于还原性钛铁矿系列,包括辉长闪长岩、闪长岩和花岗闪长岩等;④代表性低硫逸度的金属矿物,包括斜方砷铁矿、黑铋金矿、贫S的Te-Bi矿物。关键问题或薄弱环节主要有:①还原性岩浆存在温度、盐度、氧逸度、硫逸度、含水量、还原性组分类型及含量等多种属性,这些属性对还原性矽卡岩型金矿的形成有哪些影响?②Au可能以氯络合物、硫络合物、Bi-Te熔体、纳米絮状物等多种方式运移,还原性岩浆流体中Au的高效迁移及富集方式有哪些?③还原性成矿岩浆的氧化-还原性质有争议,部分学者认为岩浆始终为还原性,另一些学者认为母岩浆为氧化性,后期混入还原性物质;④存在深部W-Mo矿化、浅部Au-Sb-Bi矿化的金属元素分带现象,这种分带规律受哪些因素控制?总之,还原性矽卡岩型金矿在中国有着良好的成矿潜力和找矿前景,其中中国东部W/Sn成矿区(带)和Au成矿区(带)的叠加区域、西部还原性岩体分布区是该类金矿的有利勘探区。

    Abstract

    Reduced skarn gold deposits (RSGD) occur at calcareous sedimentary rock and have been famous for independent deposits with high gold grade (5~15 g/t). Now, the studies of RSGD are poor.  Some important questions lack enough understanding, e.g., metallogenic background, source and genesis of reduced magma, and efficient gold enrichment mechanism. This paper systematically reviews the geological characteristics, spatiotemporal distribution, metallogenic mechanism, and prospecting indicator, discusses research difficulties and metallogenic potential and prospecting prospect in China. The RSGD shows some characteristics:①unique Au-Bi-Te-As±Co element group, lacking base metals such as Cu;②The skarn consists of hedenbergite with minor garnet;③The ore-related intrusive rock belongs to the reduced ilmenite series, including gabbro diorite, diorite, and granodiorite;④Representative metal minerals with low sulfur fugacity, have lollingite, maldonite, and S-poor Te-Bi minerals. The key issues or poor research mainly include:①the reduced magmatic fluid shows many attributes, e.g., temperature, salinity, oxygen fugacity, sulfur fugacity, water content, type and content of reduced component, which attribute plays key effect during RSGD formation?②Au could migrate in various ways, e.g., chloride complexes, sulfur complexes, Bi-Te melt, and nanometer-flocs. Which mechanism is the most efficient for gold migration and enrichment in reduced magmatic fluid?③The oxidation-reduced properties of reduced ore-forming magma have been controversial. Some scholars believe that the primary magma is always reduced, but others indicate that the primary magma is oxidized and later mixed with reduced materials;④There is a phenomenon of metal element zoning, showing W-Mo mineralization in deep and Au-Sb-Bi mineralization at shallow. Which factor controls the zoning pattern? In conclusion, the RSGD shows favorable mineralization potential and prospecting prospects in China. The superposition area of W/Sn and Au mineralization regions (belts) in the eastern China, as well as the distribution region of reduced intrusive rocks in the western China, could be favorable exploration area for RSGD.

  • 黄金是世界各国长期关注的重点经济矿产资源,也是中国重要的战略资源和稀缺矿种(汪在聪等,2021;翟明国等,2021)。2016年,中国就将金矿列入24种战略性矿产目录清单(陈甲斌等,2020)。目前,中国黄金产量连续8年呈现下降态势,对外依存度一度高达60%。矽卡岩型矿床是金矿资源的重要来源之一(Meinert et al., 2005;Chang et al., 2019;赵一鸣,2012;2023)。20世纪70年代以前,矽卡岩型矿床中生产的金主要是生产其他金属(尤其是铜)的副产品(Meinert,1998a),随着国际金价的急剧上涨,以生产金为主的矽卡岩型矿床快速增多。世界各地已发现大批独立或共生的矽卡岩型金矿,大多以较高金品位的富矿为特征,备受关注,如美国Crown Jewel、加拿大Nickel Plate、厄瓜多尔Nambija和俄罗斯Tardan等众多大-中型金矿,其经济价值和勘查、研究的必要性不言而喻(陈衍景等,2004;Meinert et al., 2005;Chen et al., 2007;赵一鸣等,2017;2023;Chang et al., 2019;Burisch et al., 2023)。因此,矽卡岩型金矿床已成为国际地学研究的前沿和热点之一。

    中国是世界上矽卡岩型矿床产出最多的国家之一。Chang等(2019)统计了中国386个矽卡岩型矿床,其中矽卡岩型金矿有84个,金金属量共计1871 t,占全国黄金储量的11%。据不完全统计,中国现已探明的矽卡岩型矿床达918个,其中绝大多数大-中型矿床位于中国东部地区(周涛发等,2017;Chang et al., 2019;赵一鸣等,2012;2023),以长江中下游矽卡岩金成矿带最为代表(金储量超过600 t,涂伟,2014)。近年来,随着中国西部大开发的实施,西部地区发现和探明了一批矽卡岩型金矿床,例如云南北衙超大型金矿(金金属量303 t,Deng et al., 2015)、西藏甲玛超大型金矿(金金属量208 t,Zheng et al., 2016)等。另外,中国许多矽卡岩体被重新定义为含金矽卡岩体,例如河南银家沟矿床一直作为硫铁矿开采,通过重新分析以往岩芯样品的金含量,新探明一座中型矽卡岩型金矿;一些濒临倒闭或闭坑的矿山,例如河北寿王坟铜矿、湖南水口山铅锌矿,由于发现其矽卡岩中金含量很高,矿山获得新生;一些边缘经济价值的铁、铜、铅锌等矿床,例如安徽新桥铜铁矿床,由于发现金而成为拥有重要经济价值的复合型矿床(陈衍景等,2004;Chen et al., 2007)。可见,矽卡岩型金矿在中国极具成矿和找矿潜力,对于资源经济的可持续发展具有重大意义,是中国未来金矿产勘查和科学研究的重点。

    Meinert等(1989;1998a;1998b;2005)和Ray等(1990)对美国、加拿大、澳大利亚等国的十余个重要含金矽卡岩矿床的主要地质特征做了总结,划分出还原性矽卡岩型、氧化性矽卡岩型、镁质矽卡岩型和产于区域变质地体中矽卡岩型金矿4个类型。从其所列举的矿床实例看,以氧化性和还原性矽卡岩型金矿最为重要。自从定义矽卡岩型金矿以来,矽卡岩型矿床中的金大多是作为铜多金属矿床开采的副产品加以回收,这类金矿主要属于氧化性矽卡岩型金矿。国内外学者对氧化性矽卡岩型金矿开展了长期且深入的研究工作,取得了众多优秀的科研和找矿成果(Meinert et al., 2005;陈毓川等,2007;Chen et al., 2007;赵一鸣等,2012;2023;Deng et al., 2015;周涛发等,2017;Chang et al., 2019;毛景文等,2019;谢桂青等,2020)。值得关注的是,世界各地陆续发现了大量还原性矽卡岩型金矿(图1和图2;表1和表2),例如,美国华盛顿北部Crown Jewel(Gaspar et al., 2008)、俄罗斯远东地区Lukoganskoe(Redin et al., 2020)、西班牙阿斯图里亚斯地区Ortosa(Cepedal et al., 2006)、澳大利亚西部Nevoria(Mueller, 1997;Fan et al., 2000)、加拿大育空地区Scheelite Dome(Mair et al., 2006a)等大-中型金矿床。这些还原性矽卡岩型金矿均为高品位的富矿,社会和经济价值非常高,受到矿业界和学术界广泛关注(Chen et al., 2007;Chang et al., 2019)。

    目前,中国探明的矽卡岩型金矿基本显示氧化性特征,以铜矿、铅锌矿等矿床的伴生金矿形式存在,例如长江中下游成矿带中24个富金矽卡岩矿床均为氧化性(Chang et al., 2019;谢桂青等,2020)。Chang等(2019)总结了中国矽卡岩型矿床的地质特征及成矿规律,认为中国矽卡岩型金矿基本为氧化性矽卡岩型金矿,还原性矽卡岩型金矿少见(图2)。李建威等(2019)和Shi等(2020)认为西秦岭德乌鲁金矿和黑龙江老柞山金矿属于还原性矽卡岩型金矿。事实上,中国碳酸盐岩面积占全球碳酸盐岩总面积的25%,发育世界上最多的矽卡岩型矿床,拥有形成高品位、还原性矽卡岩型金矿床的巨大潜力(赵一鸣等,2017; Chang et al., 2019; Yang et al., 2019)。那么,与国外相比,为什么中国报道和发现的还原性矽卡岩型金矿床较少?本文认为部分原因包括:① 还原性矽卡岩型金矿床虽已有不少研究成果,但与其他类型金矿(如氧化性矽卡岩型、造山型、浅成低温热液型等)相比,研究程度仍比较低,尚未引起中国地质工作者足够重视;②部分金矿床成矿作用复杂,可能被定义为其他类型金矿床,例如造山型金矿;③一些金矿床长期被当作矽卡岩型铜矿或其他矿种开采、研究和报道,尚未开展针对性的矽卡岩金成矿作用研究。综上所述,还原性矽卡岩型金矿床在中国是一种尚未受到足够重视的金矿类型,这与其重要的经济价值和找矿潜力非常不符,急需开展相关科学研究工作。鉴于此,本文针对还原性矽卡岩型金矿的地质特征、矿床成因及找矿潜力等方面开展综合性研究,这项工作不但丰富了经典矽卡岩成矿理论,而且为中国金矿勘探开发和增储上产提供了新思路。

    图1 全球代表性氧化性和还原性矽卡岩型金矿分布图

    Fig.1 Distribution map of global representative oxidized and reduced skarn gold deposits

    矿床名称:1—Tongon;2—Ortosa;3—Penedona Jales;4—El Valle—Boinás;5—Mokrsko;6—Vysoká—Zlatno;7—Mokrsko Petrackova hora;

    8—Karavansalija;9—Evciler;10—Muruntau;11—Ingichke;12—Jilau;13—Vasilkovskoe;14—Kuru—Tegerek;15—Meliksu;16—Sayak;

    17—Novogodnee—Monto;18—Sinyukhinskoe;19—Glafirinskoe;20—Julia;21—Sukhoi—Log;22—Lugokanskoe;23—Kultuma;24—Agylki;

    25—Kekura;26—Vostok—2;27—Lermontovskoe;28—Geodo;29—Hol Kol/Tul Mi Chung;30—Phu Kham;31—Phu Thap Fah;32—Ertsberg;

    33—Ok Tedi;34—Telfer/Tennant Ck.;35—Granny Smith;36—Wallaby;37—Mount Shea;38—Nevoria;39—Boddington;40—Marvel Loch;

    41—Browns Creek;42—Stormont;43—Timbarra;44—Junction Reefs;45—Cadia;46—Kidston;47—Red Dome;48—Table Mtn.;49—Fort

    Knox;50—Ryan Lode;51—IIIinois Creek;52—Donlin Creek;53—Liberty Bell;54—Rambler;55—Nabesna;56—Brewery Creek;57—Marn/

    Horn;58—Nucleus;59—Scheelite Dome;60—Dublin Gulch;61—Lupin;62—Catface;63—South Eastern British Columbia;64—Hedley;

    65—Crown Jewel;66—Petza RiverMillerMtn.;67—Madison;68—McCoy—Cove;69—Fortitude;70—SantaMaria de la Paz;71—Guajes;

    72—Media Luna;73—Mezcala;74—Limon;75—Clarence Stream;76—Lake George;77—Malartic;78—Marmato;79—Fortuna;

    80—Nambija;81—Kori Kollo Tasna;82—Santa Lucia;83—Seridó;84—Bonfim;85—Itajubatiba

    图2 中国还原性岩浆岩及代表性矿床分布图(钨锡矿资料引自Mao et al.,2019,碳酸盐岩和氧化性矽卡岩型金矿资料引自Chang et al., 2019)

    Fig.2 Distribution map of reduced magmatic rocks and representative deposits in China (Data of W-Sn deposits from Mao et al.,2019, carbonate rocks and oxidized skarn Au deposits from Chang et al., 2019)


    1矽卡岩型金矿概念及分类

    十九世纪末,加拿大Hedley地区最早发现并开采了矽卡岩型金矿(Billingsley et al., 1941),但是相关文献报道很少。Einaudi等(1981)最早提出“矽卡岩型金矿(Au skarn)”这一概念,并指出该类金矿是单独或主要开采金金属矿产,以石榴子石和辉石等钙硅酸盐蚀变为特征。Ettlinger等(1991)认为一些富金矽卡岩型矿床虽然富含可观的金矿资源,但是不能定义为矽卡岩型金矿,例如,①印度尼西亚的Big Gossan矿床,该矿床含有较大规模金矿化(金金属量>28 t,金品位>1 g/t),但是矿床以开采铜资源为主;②俄罗斯Veselyi矿床,该矿床的高品位金矿体来自矽卡岩型Cu-Au系统,仍以开采铜资源为主,这些矿床属于矽卡岩型铜矿。值得注意的是,一些富金矽卡岩型矿床虽然含有大量其他金属矿产(例如,以磁铁矿、赤铁矿形式存在大量铁矿),但是这些金属资源尚未被开采,这类矿床仍被定义为矽卡岩型金矿,例如墨西哥Nukay-Morelos金矿(de la Garza et al., 1996)。Meinert等(1989;1998a;1998b;2005)通过对世界上数十个矽卡岩型矿床的综合性研究,确定矽卡岩型金矿包括还原性矽卡岩型、氧化性矽卡岩型、镁矽卡岩型和产于区域变质地体中矽卡岩型四类,其中还原性和氧化性矽卡岩型金矿最为重要(表1)。氧化性矽卡岩型金矿发育广泛,通常以伴生金矿形式存在,以共、伴生Cu、Te、Se矿化为特征,成矿岩浆氧逸度较高(f(O2)>FMQ+2)。矽卡岩以贫Fe石榴子石和透辉石为主,具有较高的石榴子石/辉石含量比。主要金属矿物有黄铁矿和磁黄铁矿,黄铁矿含量高于磁黄铁矿,另见少量黄铜矿、方铅矿和闪锌矿。还原性矽卡岩型金矿通常呈独立金矿形式赋存于灰岩等钙质沉积岩中,以金品位高(5~15 g/t)著称,具有独特的Au-Bi-Te-As±Co金属元素组合,缺乏Cu等贱金属元素。矽卡岩以细粒钙铁辉石为主,其次为石榴子石,具有较低的石榴子石/辉石含量比。成矿岩浆氧逸度较低(f(O2)2O3)/FeO<0.5,w(Fe2O3/(Fe2O3+FeO))<<0.75,主要属于还原性、钛铁矿系列(图3)。金属矿物主要为磁黄铁矿和毒砂,缺少原生赤铁矿、磁铁矿和硫酸盐矿物(石膏)。金主要以自然金和银金矿形式存在,与铋-碲化物(自然铋、赫碲铋矿、硫铋铜矿、黑铋金矿)关系密切(Meinert, 2000;Hart, 2007;Lawrence et al., 2017;Chang et al., 2019;赵一鸣等,2023)。)。成矿岩体通常为准铝质-弱过铝质、钙碱性的辉长闪长岩、闪长岩和花岗闪长岩等。成矿岩石中发育钛铁矿,含微量或不含磁铁矿,全岩w(fe)。成矿岩体通常为准铝质-弱过铝质、钙碱性的辉长闪长岩、闪长岩和花岗闪长岩等。成矿岩石中发育钛铁矿,含微量或不含磁铁矿,全岩w(fe

    图3 氧化性和还原性矽卡岩型金矿成矿岩体Fe2O3/FeO-SiO2(a)和log(Fe2O3/FeO)-TFeO图解(b)(底图据Kim et al., 2012)注释:氧化性矽卡岩型金矿包括中国朝山(徐兆文等,2004)、双朋西(路英川等,2017)、鸡笼山(王建等,2014)、北衙(Deng et al., 2015;He et al.,2015)、铜绿山(赵海杰等,2010)、甲玛(祁婧,2021)、俄罗斯Novogodnee-Monto(Soloviev et al., 2013)、Sinyukhinskoe(Soloviev et al., 2019a)、吉尔吉斯斯坦Kuru-Tegerek(Soloviev et al., 2017a)、加拿大Yukon(Hart, 2004)、印度尼西亚Ertsberg(Meinert et al., 1997)、韩国Geodo Mine 金矿(Kim et al., 2012);还原性矽卡岩型金矿包括中国老柞山(作者未发表数据)、德乌鲁(Sui et al., 2016)、俄罗斯Vostok-2(Soloviev et al., 2011;2017b)、Agylki(Soloviev et al., 2020)、Lermontovskoe(Soloviev et al., 2017c)、Lugokanskoe(Redin et al., 2020)、吉尔吉斯斯坦Meliksu(Soloviev et al., 2019b)、美国Crown Jewel 金矿(Gaspar, 2008)、加拿大Hedley(Ray et al., 1992)、Mayo 金矿(Hart, 2004)

    Fig.3 Fe2O3/FeO-SiO2 diagram (a) and log(Fe2O3/FeO)-TFeO diagram (b) of ore-related intrusion from the oxidized and reduced skarn gold deposits (base map from Kim et al., 2012)Note: Oxidized skarn gold deposits include: Chaoshan (Xu et al., 2004), Shuangpengxi (Lu et al., 2017), Jilongshan (Wang et al., 2014), Beiya (Denget al., 2015; He et al., 2015), Tonglvshan (Zhao et al., 2010), Jiama (Qi et al., 2021) in China, Novogodnee-Monto (Soloviev et al., 2013), Sinyukhinskoe(Soloviev et al., 2019a) in Russia, Kuru-Tegerek (Soloviev et al., 2017a) in Kyrgyzstan, Yukon (Hart, 2004) in Canada, Ertsberg (Meinert et al.,1997) in Indonesia, Geodo Mine (Kim et al., 2012) in Korea; Reduced skarn gold deposits include: Laozuoshan (unpublished data from author),Dewulu (Sui et al., 2016) in China, Vostok-2 (Soloviev et al., 2011;2017b), Agylki (Soloviev et al., 2020), Lermontovskoe (Soloviev et al., 2017c),Lugokanskoe (Redin et al., 2020) in Russia, Meliksu (Soloviev et al., 2019b) in Kyrgyzstan, Crown Jewel (Gaspar, 2008) in USA,Hedley (Ray et al., 1992), Mayo (Hart, 2004) in Canada


    图3 氧化性和还原性矽卡岩型金矿成矿岩体Fe2O3/FeO-SiO2(a)和log(Fe2O3/FeO)-TFeO图解(b)(底图据Kim et al., 2012)注释:氧化性矽卡岩型金矿包括中国朝山(徐兆文等,2004)、双朋西(路英川等,2017)、鸡笼山(王建等,2014)、北衙(Deng et al., 2015;He et al.,2015)、铜绿山(赵海杰等,2010)、甲玛(祁婧,2021)、俄罗斯Novogodnee-Monto(Soloviev et al., 2013)、Sinyukhinskoe(Soloviev et al., 2019a)、吉尔吉斯斯坦Kuru-Tegerek(Soloviev et al., 2017a)、加拿大Yukon(Hart, 2004)、印度尼西亚Ertsberg(Meinert et al., 1997)、韩国Geodo Mine 金矿(Kim et al., 2012);还原性矽卡岩型金矿包括中国老柞山(作者未发表数据)、德乌鲁(Sui et al., 2016)、俄罗斯Vostok-2(Soloviev et al., 2011;2017b)、Agylki(Soloviev et al., 2020)、Lermontovskoe(Soloviev et al., 2017c)、Lugokanskoe(Redin et al., 2020)、吉尔吉斯斯坦Meliksu(Soloviev et al., 2019b)、美国Crown Jewel 金矿(Gaspar, 2008)、加拿大Hedley(Ray et al., 1992)、Mayo 金矿(Hart, 2004)

    Fig.3 Fe2O3/FeO-SiO2 diagram (a) and log(Fe2O3/FeO)-TFeO diagram (b) of ore-related intrusion from the oxidized and reduced skarn gold deposits (base map from Kim et al., 2012)Note: Oxidized skarn gold deposits include: Chaoshan (Xu et al., 2004), Shuangpengxi (Lu et al., 2017), Jilongshan (Wang et al., 2014), Beiya (Denget al., 2015; He et al., 2015), Tonglvshan (Zhao et al., 2010), Jiama (Qi et al., 2021) in China, Novogodnee-Monto (Soloviev et al., 2013), Sinyukhinskoe(Soloviev et al., 2019a) in Russia, Kuru-Tegerek (Soloviev et al., 2017a) in Kyrgyzstan, Yukon (Hart, 2004) in Canada, Ertsberg (Meinert et al.,1997) in Indonesia, Geodo Mine (Kim et al., 2012) in Korea; Reduced skarn gold deposits include: Laozuoshan (unpublished data from author),Dewulu (Sui et al., 2016) in China, Vostok-2 (Soloviev et al., 2011;2017b), Agylki (Soloviev et al., 2020), Lermontovskoe (Soloviev et al., 2017c),Lugokanskoe (Redin et al., 2020) in Russia, Meliksu (Soloviev et al., 2019b) in Kyrgyzstan, Crown Jewel (Gaspar, 2008) in USA,Hedley (Ray et al., 1992), Mayo (Hart, 2004) in Canada


    表1氧化性和还原性矽卡岩型金矿床地质特征

    Table 1 Geological characteristics of oxidized and reduced skarn gold deposits

    对比项目

    氧化性矽卡岩型金矿

    还原性矽卡岩型金矿

    构造背景

    岛弧/陆缘弧、碰撞/增生造山带、陆内断裂岩浆带、活化的克拉通边缘

    岛/陆缘弧、弧后、前陆褶皱带、碰撞/增生造山带、微陆块

    成矿有关岩石

    花岗闪长岩、石英二长岩、石英闪长岩、花岗斑岩等。全岩w(Fe2O3)/w(Fe2O3+FeO)>0.4,氧化性、磁铁矿系列

    辉长闪长岩、闪长岩和花岗闪长岩等。发育钛铁矿。全岩

    w(Fe2O3)/w(Fe2O3+FeO)<<0.75,还原性、钛铁矿系列

    岩浆氧逸度

    氧逸度较高(f(O2)>FMQ+2)

    氧逸度较低(f(O2))

    矿石矿物

    黄铁矿、磁黄铁矿为主,其次为黄铜矿、斑铜矿、毒砂、磁铁矿、赤铁矿、辉钼矿、辉铜矿、方铅矿、闪锌矿、雄黄、雌黄、砷黝铜矿、辉铋矿等

    磁黄铁矿和毒砂为主,其次为黄铜矿、黄铁矿、钛铁矿、赫碲铋矿、辉碲铋矿、自然铋、黑铋金矿、红锑镍矿、辉砷镍矿、辉钴矿等

    矽卡岩矿物

    贫Fe石榴子石和透辉石为主,较高的石榴子石/辉石含量比

    钙铁辉石为主,其次为石榴子石,较低的石榴子石/辉石含量比

    金属元素组合

    Cu-Au-As-Te-Bi-Pb-Zn-Ag-Se

    Au-Bi-Te-As-Mo-W-Pb-Zn-Ag-Sb-Co

    载金矿物

    自然金、银金矿、碲金矿、碲金银矿等

    自然金、银金矿、铋-碲化物等

    代表性矿床

    印度尼西亚Ertsberg、美国McCoy、厄瓜多尔Nambija、中国北衙、甲玛、新桥金矿等

    美国Crown Jewel、加拿大Nickel Plate、俄罗斯Lukoganskoe、西班牙Ortosa、澳大利亚Nevoria、中国老柞山金矿等

    资料来源

    陈衍景等,2004;Meinert et al., 2005;涂伟,2014;Deng et al., 2015;Zheng et al., 2016;Chang et al., 2019;赵一鸣等,2023

    Ray et al., 1992;Mueller, 1997;Fan et al., 2000;Meinert et al., 2005;Cepedal et al., 2006;Mair et al., 2006a;Hart, 2007;Gaspar et al., 2008;Redin et al., 2020;赵一鸣等,2023

    一些矽卡岩型金矿的地质特征和构造背景与其他类型金矿相似,导致金矿床类型及成因存在争议。例如,在区域变质作用背景下,矽卡岩型金矿与造山型金矿存在部分相似地质特征(Goldfarb et al., 2005;2023)。造山型金矿通常存在于韧性剪切带中,造山型金矿系统深部的温度很高,深部钙硅酸盐矿物会发生变质作用,形成矽卡岩(Hart, 2007;Groves et al., 2018)。例如,纳米比亚Navachab、加拿大Tillicum等金矿内韧性剪切带或断裂构造穿切深部钙质或富铁岩层,岩层中会形成矽卡岩,金矿化通常发育在矽卡岩外侧(Mueller et al., 1991;Dziggel et al., 2010;Wulff et al., 2017)。构造活动对这些金矿床的控制是次要或微弱的,无论这些矿床被称为矽卡岩型还是造山型,均缺少成矿岩浆活动,均是形成于深部区域变质环境中(Hart, 2007)。目前,矽卡岩型金矿与斑岩型、浅成低温热液型矿床的成因联系已经被证实(Sillitoe, 1993;Meinert, 2000)。但是,矽卡岩型金矿与卡林型金矿的成因联系仍存在争议(Henry et al., 1998;Mercer, 2021;Pinet et al., 2022;Christopher et al., 2023;Henry et al., 2023)。例如,美国内华达地区部分卡林型金矿与附近斑岩-矽卡岩型金矿具有相似的成矿年龄,均形成于始新世。但是,这些卡林型金矿的形成与岩浆活动可能没有直接成因联系,两类矿床在形成过程中可能经历了同一地质地球化学过程(Smith, 2001;Cline, 2004;Cline et al., 2005;Hart, 2007;Mercer, 2021;Christopher et al., 2023;Henry et al., 2023)。

    2还原性矽卡岩型金矿时空分布特征

    世界各地的古生代和中生代造山带是还原性矽卡岩型金矿的主要聚集区(图1、图2),包括中亚造山带、东澳大利亚New England-Lachlan造山带、北美科迪勒拉造山带、加拿大Appalachian造山带、欧洲Bohemian地块和Iberian半岛等地区。代表性还原性矽卡岩型金矿床有西班牙Ortosa(Fuertes-Fuente et al., 2000)、加拿大Nickel Plate、French和Marn/Horn(Ray et al., 1992;Hart, 2007)、吉尔吉斯斯坦Meliksu(Soloviev et al., 2019b)等大中型金矿(表2)。另外,中亚地区个别古生代金矿存在还原性矽卡岩型金矿和造山型金矿的争议,例如,塔吉克斯坦Jilau金矿(Cole et al., 1999;2000)。部分地质学家提出世界上存在少量太古代还原性矽卡岩型金矿,例如澳大利亚Nevoria金矿(Mueller, 1997;Kolb et al., 2015)、加拿大Lupin金矿(Geusebroek et al., 2004;Hart, 2007),这些金矿赋存于太古代BIF型铁矿建造中,显示出还原性矽卡岩型金矿的金属矿物和蚀变矿物组合特征,与此同时,金成矿作用受到韧性剪切带控制,具有部分造山型金矿的地质地球化学特征,金矿床成因仍有争议。


    表2 代表性还原性矽卡岩型金矿床的主要地质特征

    Table 2 Major geological characteristics of representative reduced skarn gold deposit

    矿床

    国家/地区

    元素组合

    地层

    成矿岩体

    成岩年龄

    成矿年龄

    矿石矿物

    脉石矿物

    数据来源

    Fortitude

    美国/内

    华达

    Au-Bi-Te-As

    Antler Peak组灰岩

    石英闪长岩、花岗闪长岩

    38 Ma


    磁黄铁矿、毒砂、黄铁矿、辉铋矿

    辉石、石榴子石、阳起石、绿泥石、黑柱石、石英、方解石

    Franchini et al., 2002

    Crown Jewel

    美国/华

    盛顿

    Au-As-Cu-Co-Bi-

    Anarchist群大理岩

    花岗闪长岩,

    w(Fe2O3)/w(Fe2O3+FeO)=0.27

    锆石U-Pb:(52.7±1.1)Ma~(54.0±1.3)Ma


    磁黄铁矿、毒砂、黄铁矿、黄铜矿、辉铋矿、方铅矿、闪锌矿、辉钴矿、方辉铜矿

    辉石、石榴子石、角闪石、黑云母、钾长石、绿帘石、绿泥石、石英、方解石

    Gaspar, 2008

    Hedley district(e.g., Nickel Plate, Canty and French deposits)

    加拿大/不列颠哥伦比亚

    Au-As-Cu-Co-Bi-Te-Ag-Sb

    晚三叠世Nicola群:镁铁质火山岩、凝灰岩、钙质粉砂岩、灰岩

    辉长岩、闪长岩、花岗闪长岩,w(Fe2O3)/

    w(Fe2O3+FeO)=0.19

    锆石U-Pb:194~219 Ma


    磁黄铁矿、毒砂,少量黄铜矿、黄铁矿、钛铁矿、赫碲铋矿、辉碲铋矿、自然铋、黑铋金矿、红锑镍矿、辉砷镍矿、辉钴矿、自然金

    石榴子石(钙铝榴石-钙铁榴石,低Mn,<0.5% MnO)、辉石、钾长石、石英、阳起石、黑云母、绿帘石、方解石、方柱石、葡萄石

    Ray et al., 1992

    Alaska-Yukon district(e.g., Scheelite Dome, Liberty Bell, Dublin Gulch, Nucleus deposits)

    加拿大/育空,美国/阿拉斯加

    Au-Bi-Te-W-As

    前寒武纪千枚岩、石英岩、砂岩、碳酸盐岩、碳质泥岩

    二长花岗岩,花岗闪长岩

    锆石U-Pb:(94.59±0.90)Ma

    黑云母Ar-Ar:(92.86±0.36)Ma

    磁黄铁矿、毒砂、黄铜矿、自然金、自然铋、铋碲化物、铋硒化物

    透辉石、角闪石、黑云母、阳起石、斜长石、石英铁白云石

    Mair et al., 2006

    Nevoria

    澳大利亚

    Au-Bi-As-Bi-Te-W

    太古代BIF、科马提岩、含石墨片岩、灰岩、白云岩

    花岗闪长岩

    太古代,2.70~2.62 Ga


    磁黄铁矿、毒砂、黄铁矿、砒毒砂、黄铜矿、黑铋金矿、铋碲化物、自然金、白钨矿

    铁铝-钙铝榴石、钙铁辉石、透辉石、斜长石、阳起石、角闪石、石英、黑云母

    Mueller et al., 1997

    Junction Reefs district (Sheahan-Grants, Frenchmans, Cornishmens)

    澳大利亚/新南威尔士州

    Au-As-Bi-Te

    下奥陶统Coombing组灰岩、粉砂岩、凝灰质砂岩和燧石

    二长闪长岩,

    w(Fe2O3)/w(Fe2O3+FeO)=0.22~0.34

    黑云母Rb-Sr:(438±4)Ma

    绢云母Ar-Ar:440 Ma

    磁黄铁矿、毒砂、黄铁矿、黄铜矿、自然铋、黑铋金矿

    单斜辉石、石榴子石、角闪石、方解石、石英、绿泥石

    Gray et al., 1995

    Lugokanskoe

    俄罗斯/外贝加尔

    地区

    Au-As-Bi-Te-W

    Bystraya组灰岩和白云岩

    花岗闪长斑岩,

    w(Fe2O3)/w(Fe2O3+FeO)=0.12~0.32

    黑云母Ar-Ar:(154.7±1.2)Ma

    金云母Ar-Ar: (160.0±2.0)Ma;冰长石Ar-Ar:(155.9±4.5)Ma

    黄铁矿、毒砂、磁黄铁矿、黄铜矿、斑铜矿、闪锌矿、方铅矿、磁铁矿、辉锑矿、自然铋、辉钼矿、白钨矿、碲化物、自然金

    橄榄石、辉石、石榴子石、金云母、绿帘石、绿泥石、石英、阳起石、方解石

    Redin et al.,

    2020

    Meliksu

    吉尔吉斯斯坦

    Au-As-Bi-Te-W

    泥盆系—石炭系灰岩、白云岩

    辉长岩、闪长岩、花岗闪长岩,w(Fe2O3)/w(Fe2O3+FeO)=0.20~0.43

    280~274 Ma


    毒砂、磁黄铁矿、黄铁矿、白钨矿、黄铜矿

    石榴子石、钙铁辉石、斜长石、角闪石、石英、绿泥石、白钨矿、黑云母、方解石

    Soloviev et al., 2019b

    Ortosa

    西班牙/阿斯图里

    亚斯

    Au-As-Bi-Te

    Furada组页岩、粉砂岩、钙质粉砂岩夹砂质灰岩

    石英二长闪长岩,

    w(Fe2O3)/w(Fe2O3+FeO)=0.08~0.18

    锆石U-Pb:(297±6)Ma


    磁黄铁矿和毒砂,少量砒毒砂、黄铁矿、黄铜矿、闪锌矿、钛铁矿、自然金、黑铋金矿、赫碲铋矿、自然铋、辉铋矿

    石榴子石、辉石、角闪石、阳起石、黑云母、氟磷灰石、钾长石、钠长石、绿帘石、符山石、方

    解石

    Fuertes-Fuente et al., 2000; Martin-Izard et al., 2000

    德乌鲁

    中国/甘肃

    Au-As-Bi-Te

    下二叠统毛毛隆组灰岩、粉砂岩、石英砂岩

    石英闪长岩,

    w(Fe2O3)/w(Fe2O3+FeO)=0.15~0.20

    锆石U-Pb:(238.6±1.5)Ma

    黑云母Ar-Ar:(239.9±1.4)Ma

    毒砂、斜方砷铁矿、磁黄铁矿、黄铜矿、斑铜矿、钛铁矿、银金矿、自然铋、辉铋矿、硫碲铋矿

    硅灰石、石榴子石、辉石、绿帘石、绿泥石、阳起石、黑云母

    徐学义等,2014;李建威等,2019

    大安河

    中国/黑

    龙江

    Au-As-Bi-Te

    二叠系土门岭组板岩、砂岩、大理岩、安山岩

    辉长闪长岩

    锆石U-Pb:(185.8±1.3)Ma、(183.7±1.3)Ma


    毒砂、磁黄铁矿、黄铜矿、黄铁矿、闪锌矿、自然金、银金矿、硫碲

    铋矿

    石榴子石、透辉石、阳起石、绿帘石、透闪石、石英、方解石、方柱石、绿泥石、绢云母

    赵春涛,2021

    老柞山

    中国/黑

    龙江

    Au-As-Bi-Te

    中-新元古界麻山群混合岩、大理岩、片麻岩

    闪长(玢)岩,

    w(Fe2O3)/w(Fe2O3+FeO)=0.03~0.09

    锆石U-Pb:(103.2±1.0)Ma

    石榴子石U-Pb:(107.4±1.8)Ma

    磁黄铁矿、毒砂、黄铁矿、黄铜矿、方铅矿、闪锌矿、自然金

    石榴子石、透辉石、斜长石、黑云母、绿帘石、绿泥石、石英、方解石

    赵春涛,2021;

    作者未发表

    数据

    从全球分布来看,虽然一些金矿床是否属于还原性矽卡岩型金矿仍需斟酌,但是显生宙,特别是晚古生代—中生代是还原性矽卡岩型金矿的主要成矿期。目前,前寒武纪还原性矽卡岩型金矿形成和保存较困难,发现较少。

    3典型还原性矽卡岩型金矿床
    3.1 Hedley金矿田

    Hedley金矿田位于加拿大不列颠哥伦比亚省,由Nickel Plate、French、Canty和Good Hope等大中型还原性矽卡岩型金矿床组成(图4)。大地构造位置属于北美科迪勒拉造山带。金金属总量为62.7 t,金平均品位为7.4 g/t,金金属量的97%来自Nickel Plate金矿。矿田出露地层主要为上三叠统Nicola群,由上至下分别为Whistle、Stemwinder、Chuchuwaya、Hedley、French Mine和Oregon Chaims组(Milford, 1984)。Nicola群主要由镁铁质火山岩、凝灰岩、钙质粉砂岩及灰岩组成,厚度达6000 m。矿田内发育4期侵入岩,第1期为石英闪长岩和辉长岩(即Hedley岩体),呈岩株、岩脉状产出,锆石U-Pb年龄为219~194 Ma;第2期为花岗闪长岩和辉长岩,锆石U-Pb年龄为(193±1)Ma~(194.6±5)Ma(Parrish et al., 1992);第3期为石英二长岩和花岗闪长岩,锆石U-Pb年龄为(168.8±9)Ma;第4期为石英斑岩和细晶岩,锆石U-Pb年龄为(154.5±8)Ma。矿田内发育2期构造变形事件,第1期发育在Nicola群,形成西-北西向褶皱,与Hedley岩体侵位有关,控制着Nickel Plate矽卡岩型金矿化;第2期是主要构造事件,形成向东倾覆的不对称褶皱,走向近南北,倾向西,形成大量背斜构造。


    图4加拿大Hedley地区地质简图(改自Ray et al., 1994)

    Fig. 4 Geological map of the Hedley area in Canada (modified from Ray et al., 1994)


    矽卡岩型金矿化与Hedley岩体有密切成因联系,岩石w(Fe2O3)/w(Fe2O3+FeO)=0.19。金矿体主要位于Hedley岩体与Hedley组和French Mine组浅海相钙质沉积岩的接触带。金矿体主要赋存于外矽卡岩带,内矽卡岩带发育晚期含金石英-硫化物细脉。外矽卡岩带出露面积达4 km2,厚度达300 m,显示Au-As-Cu-Co-Bi-Te-Ag-Sb元素异常。金属矿物有磁黄铁矿和毒砂,其次为黄铜矿、黄铁矿、钛铁矿、赫碲铋矿、辉碲铋矿、自然铋、黑铋金矿、红锑镍矿、辉砷镍矿、辉钴矿、自然金和金银矿等。脉石矿物有石榴子石(钙铝榴石-钙铁榴石,低Mn,w(MnO)<0.5%)、辉石、钾长石、石英、阳起石、黑云母、绿帘石、方解石、方柱石等(Ray et al., 1992)。

    3.2 Ortosa金矿床

    Ortosa还原性矽卡岩型金矿床位于西班牙奥维耶多市西50 km。大地构造位置属于欧洲海西造山带内伊比利亚(Iberian)地块。出露地层为志留纪Furada组和泥盆纪Rañeces组。Furada组为含铁砂岩、鲕粒状铁矿石夹页岩和砂质灰岩透镜体,厚80~200 m。Rañeces组为灰岩,厚400~600 m。侵入岩主要有石英二长闪长岩(即Ortosa岩体),出露面积约1 km2,呈岩基和岩脉产出(图5)。

    矽卡岩型金矿化发育于Ortosa岩体与Furada组顶部和Rañeces组底部的接触带内,形成矽卡岩带(Fuertes-Fuente et al., 2000)。内矽卡岩带发育辉石、黑云母、角闪石(阳起石、铁阳起石、铁角闪石)、石英和金属硫化物。金属硫化物主要为磁黄铁矿和毒砂,少量黄铜矿和闪锌矿。外矽卡岩带发育辉石、钙铝-钙铁榴石、角闪石(铁阳起石-铁角闪石)、石英、氟磷灰石、钾长石、钠长石、绿帘石、符山石、方解石和绿泥石。另外,外矽卡岩带存在大量角岩,角岩带中见石英、绿泥石、磁黄铁矿、黄铜矿细脉。金属矿物主要有磁黄铁矿和毒砂,少量砒毒砂、黄铁矿、黄铜矿、闪锌矿和钛铁矿。金主要以自然金和黑铋金矿形式存在,其次为赫碲铋矿、自然铋、辉铋矿(Fuertes-Fuente et al., 2000)。

    4成矿构造背景与岩体特征

    目前已有资料显示,与金成矿有关还原性岩体主要分布于中亚造山带、古特提斯缝合带、华北克拉通边缘、澳大利亚东南部Tasman造山带、北美科迪勒拉造山带和安第斯山等地区(Thompson et al., 1999;2000;Lang et al., 2000;Hart, 2007;Smith et al., 2012;Soloviev et al., 2019;2020;李建威等,2019)。这些地区大多经历了复杂的构造-岩浆演化过程,成矿构造背景多样,存在岛/陆缘弧、弧后、前陆褶皱带、碰撞/增生造山带、微陆块等观点(Thompson et al., 1999;2000;Goldfarb et al., 2000;Hart, 2007;李建威等,2019;Shi et al., 2020)。


    图5西班牙Ortosa地区地质简图(改自Fuertes-Fuente et al., 2000)

    Fig.5 Geological map of the Ortosa area, Spain (modified from Fuertes-Fuente et al., 2000)


    北美科迪勒拉造山带内Yukon和Alaska地区发育众多还原性岩体及相关矽卡岩型金矿,综合研究程度高(Maloof et al., 2001;Mair et al., 2006b;Hart, 2007;Betsi et al., 2016)。这些还原性矽卡岩型金矿赋存于古老克拉通边缘的碎屑岩和碳酸盐岩地层中。还原性成矿岩浆形成于晚中生代微陆块俯冲-碰撞背景下古老陆缘的加厚过程(Maloof et al., 2001;Mair et al., 2006b;Hart, 2007;Betsi et al., 2016)。还原性成矿岩浆侵位时间短(~5 Ma),形成于前陆逆冲、地壳加厚过程中的伸展阶段,是白垩纪科迪勒拉造山作用晚期岩浆活动的产物。该期岩浆活动形成了数百个岩株、岩脉和岩基,岩体侵位到碎屑岩和碳酸盐岩地层中。与矽卡岩型Au成矿有关还原性岩体通常为最年轻岩体,形成了Tombstone金成矿带(Mortensen et al., 2000;Hart et al., 2004;Hart, 2007)。这些还原性成矿岩体不属于I型(Newberry et al., 1995a; McCoy et al., 1997;Thompson et al., 1999)或S型花岗岩(Anderson, 1988;Gordey et al., 1993;Betsi et al., 2016),而是兼具二者的地球化学特征。岩石主要为偏铝质,部分为过铝质,具有钙碱性特点。岩体显示出高放射成因初始Sr比值(>0.71),εNd为-7~-15(Lang, 2001;Hart et al., 2005;Hart, 2007)。北美Yukon-Alaska地区还原性成矿岩体可能形成于加厚大陆边缘的后碰撞伸展背景。


    图6矽卡岩型矿床的氧化还原状态(据Newberry, 1991修改)

    Fig. 6 Oxidation state of skarn deposits (modified from Newberry, 1991)


    还原性成矿岩体主要为含角闪石-黑云母花岗闪长岩,其次为闪长岩、辉长闪长岩、石英闪长岩等。岩石发育钛铁矿,含微量或不含磁铁矿,全岩w(Fe2O3)/w(Fe2O3+FeO)<0.75,磁化率低(10-4~10-2S.I),显示低氧逸度特征(Ishihara, 1981;McCoy et al., 1997; Newberry, 1998; Duncan, 1999; Thompson et al., 2000; Betsi et al., 2016;李建威等,2019; Soloviev et al., 2019)。成矿岩体通常具有镁铁质到长英质的多相特征,镁铁质相发育在一些杂岩体中,或作为独立岩体存在,可以解释为一期岩浆的结晶分异作用或多期岩浆活动的混合产物(Duncan, 1999; Thompson et al., 2000; Mair et al., 2006b; Hart, 2007; Soloviev et al., 2019)。岩体内长英质相部分显示出流体饱和的地质现象,例如,伟晶岩、细晶岩、晶洞和UST结构(Bakke, 1995; Duncan, 1999)。代表性案例为北美Alaska-Yukon地区的Tombstone杂岩体,该杂岩体由众多同期多相岩体组成,其中长英质岩体显示Au矿化特征(McCoy et al., 1997; Newberry, 1998; Maloof et al., 2001; Mair et al., 2006b; Hart, 2007; Betsi et al., 2016)。

    目前,还原性、钛铁矿系列岩浆的成因存在多种认识。多数学者认为氧化性、磁铁矿系列花岗质岩浆侵入上覆还原性泥质沉积物地层或含碳质沉积物地层中,经过含碳变质沉积岩的同化混染形成还原性岩浆(Ague, 1987;1988;Rowins, 2000;Soloviev et al., 2019;李延河等,2020;Santacruz et al., 2021)。还原性沉积岩地层的加入影响着岩浆氧逸度,这种影响可能是直接的(岩浆同化吸收还原性沉积岩)或间接的(还原性沉积岩加热释放还原性气体,岩浆同化吸收这些还原性气体)(McCoy et al., 1997;Rowins, 2000;Hart, 2007;李延河等,2020)(图6)。Takagi(2004)对日本岛弧氧化性和还原性花岗岩进行对比研究,发现岩浆氧化还原状态与俯冲速率呈负相关关系,俯冲沉积物的混入量控制着还原性岩浆的形成,当氧化性花岗质岩浆中混入的俯冲沉积物大于15%时,岩浆演化为还原性岩浆。一些学者发现部分S型花岗岩具有较高的CH4/SO2比值,当氧化性I型花岗质岩浆与这类S型花岗岩质岩浆发生混合作用时,岩浆中还原性组分含量明显增加,形成还原性岩浆(芮宗瑶等,2003;徐文刚,2012)。近年来,一些地质学家发现幔源镁铁质岩浆和年轻下地壳长英质岩浆的混合作用可以形成还原性岩浆(Redwood, 1997;Cao et al., 2016;吴楚,2017;马瑞等,2020;张飞等,2023)。Mair等(2011)发现富挥发分的富集岩石圈地幔来源的煌斑岩熔体在上升过程中与下地壳来源的长英质熔体发生混合作用,可能形成还原性岩浆。Cao等(2015;2016)发现在洋脊俯冲形成的板片窗环境中,深部软流圈内的还原性挥发组分通过撕裂的板片窗口直接上升,与原始较氧化的楔形地幔发生相互作用,导致氧逸度降低,形成还原性的玄武质岩浆,最终上侵演化形成还原性花岗岩。俯冲大洋板片及上覆沉积物发生脱水作用,洋壳沉积物中C物质与H2O反应生成CH4和CO2,这些还原性物质的加入会增强岩浆的还原性(Ballhaus, 1993;Takagi, 2004)。另外,在岩浆上升侵位过程中,随着温度和压力的降低,岩浆中挥发分(C-S-O-H族多价态气/液相化合物)的溶解度会降低,导致岩浆发生脱气作用。目前,岩浆脱气作用对氧逸度的影响存在不同观点。一些专家认为岩浆的脱气量与残余岩浆熔体的氧逸度有着正相关关系(Holloway, 2004;Métrich et al., 2009;Bell et al., 2011),另有部分学者指出岩浆脱气作用对残余岩浆熔体氧逸度的影响十分有限(Kelley et al., 2012;Moussallam et al., 2014;Grocke et al., 2016;Brounce et al., 2017;马瑞等,2020)。综上所述,还原性、钛铁矿系列岩浆的源区和成因较复杂,母岩浆通常显示氧化性,部分可能具有还原性,岩浆演化过程中还原性物质的混入对于还原性岩浆的形成至关重要。

    5典型蚀变矿物及空间分布

    还原性矽卡岩型金成矿系统的矿物组合及蚀变空间分带受岩浆温度、流体-围岩相互作用等因素控制。还原性成矿岩体内部发育席状石英脉,石英脉边缘出现粗粒钾长石或云母。一些黑云母-金属硫化物细脉沿岩体裂隙充填。岩体内各类脉体中金属硫化物含量通常较低(0.1%~2%),主要有黄铁矿、磁黄铁矿、毒砂,少量白钨矿、辉钼矿、辉铋矿和锡石等(Franchini et al., 2002;Mair et al., 2006a;2006b;Hart, 2007;李建威等,2019;Soloviev et al., 2019)。

    矽卡岩型矿化通常位于侵入岩体边部。矽卡岩期形成辉石、硅灰石、石榴子石及符山石等。退化蚀变阶段发育透闪石、绿帘石、黑云母及阳起石等,该期矿物叠加到矽卡岩期矿物组合上,金属矿物主要有磁黄铁矿、毒砂、白钨矿等(Maloof et al., 2001;Marsh et al., 2003;Mair et al., 2006a)。总体上,矽卡岩期石榴子石较少,这是还原性矽卡岩金矿的重要特点。石英-硫化物阶段的席状脉分布于岩体内部及附近,矿物组合为钾长石-石英-云母-白钨矿-金属硫化物,金属矿物呈稀疏状分布,主要为磁黄铁矿、毒砂、黄铁矿及Au-Bi-Te金属合金等。碳酸盐阶段的方解石-石英-方铅矿-闪锌矿脉远离岩体分布,通常超过角岩化区域范围(Meinert, 1998a;Mair et al., 2006a;Hart, 2007;李建威等,2019;Soloviev et al., 2019)。成矿过程及各阶段脉体形成的演化序列见图7和图8。

    6代表性金属矿物和元素组合

    还原性矽卡岩型金矿的金属矿物含量较低(<5%),主要为磁黄铁矿、毒砂、黄铁矿,不同程度富集Bi、As、W、Mo、Te和Sb元素。另外含有一定量的辉钼矿和白钨矿,可以形成独立矿体。黝铜矿、脆硫锑铅矿及硫锑铅矿等富Sb矿物通常分布于岩体内部或附近,而辉锑矿远离岩体分布。Bi元素在岩体内部及邻区富集,在岩体远端和顶部贫化(Metz, 1991;Newberry et al., 1995b;McCoy et al., 1997;McCoy, 2000;Hart, 2007;Soloviev et al., 2019)。

    还原性矽卡岩型金矿具有一套代表性低硫逸度的金属矿物和/或元素组合,包括斜方砷铁矿(FeAs2)、黑铋金矿(Au2Bi)、自然Bi、Te-Bi矿物(例如碲铋矿、辉碲铋矿、赫碲铋矿、硫碲铋矿、叶碲铋矿等)等(Meinert,1989;Long et al., 1992;McCoy et al., 1997;Hart et al., 2000;McCoy, 2000;李建威等,2019)。As元素普遍存在,与Au关系密切,Au/As关联指数介于0.6~0.9(McCoy, 2000)。Au和Bi存在紧密成因联系,二者具有强烈的相关性,关联指数>0.9(Meinert, 1989;Newberry et al., 1997;McCoy, 2000;Franchini et al., 2002;刘家军等,2021)。Acosta-Góngora等(2015)发现辉铋矿+自然Au与自然Au+自然Bi的矿物组合共生现象,由于辉铋矿的熔点高(775℃,Lin et al., 1996),在Bi-Au-S熔体中不能形成,因此,辉铋矿+自然Au可能是自然Au+自然Bi转变而来,例如温度降低或硫逸度升高,自然Bi会形成辉铋矿,导致Au或Au2Bi(黑铋金矿)从Bi熔体中结晶出来(Cockerton et al., 2012),黑铋金矿由于硫化反应分解(McCoy, 2000;Ciobanu et al., 2010),形成辉铋矿+自然Au的矿物组合。Te含量一般低于Au和Bi,通常呈Te-Bi-(S)矿物形式存在(McCoy, 2000;刘家军等,2021)。例如,加拿大Hedley还原性矽卡岩型金矿中自然Au与碲化物关系密切,二者呈包体形式存在于毒砂或磁黄铁矿中(Ettlinger et al., 1992)。加拿大Dublin Gulch还原性矽卡岩型金矿内40%的金与辉碲铋矿、碲铋矿、自然Bi形成复杂的共生结构(Maloof et al., 2001;Marsh et al., 2003;Mair et al., 2006a;Hart, 2007)。

    图8还原性侵入岩有关金成系统形成过程中各类脉体演化序列(引自Hart, 2007)Q—石英;Ksp—钾长石;Sh—白钨矿;Py—黄铁矿;Po—磁黄铁矿;Apy—毒砂;Sti—辉锑矿

    Fig.8 Evolving paragenesis of various veins of the reduced intrusion related gold system (from Hart, 2007)Q—Quartz; Ksp—K-feldspar; Sh—Scheelite; Py—Pyrite; Po—Pyrrhotite; Apy—Arsenopyrite; Sti—Stibnite


    图7还原性矽卡岩型金矿主要矿物生成顺序

    Fig.7 Mineral formation sequence of reduced skarn gold deposit


    7成矿流体中还原性组分

    传统斑岩成矿模式强调高氧逸度、高盐度岩浆热液控制着金属元素的运移和富集,而还原性岩浆有关金矿主要为富CO2和CH4、低盐度的岩浆热液,部分为较高盐度流体(Burnham, 1979;Baker et al., 2001;Marsh et al., 2003;Mair et al., 2006a;陈衍景等,2007)。CH4、CO2是还原性成矿流体重要组成部分(Rowins, 2000;申萍等,2020)。Thompson等(1999)对全球还原性岩浆有关金矿的成矿流体进行了研究,发现大多数矿床内流体包裹体富含CO2。富CO2包裹体长期被认为是矿床变质成因的证据,这是因为造山型金矿具有相似的流体特征(Goldfarb et al., 1997;2005;2023;陈衍景等,2007)。然而,富CO2流体可以来自岩浆流体(Roedder, 1984;Webster et al., 1988;陈衍景等,2007;Soloviev et al., 2018)。Baker等(1999)报道北美Yukon地区还原性岩浆有关金矿中富CO2包裹体和高盐度包裹体共存,认为是岩浆流体不混溶相分离作用的结果。可见,流体中CO2的存在及其含量不能简单定义金矿成因类型。

    还原性成矿流体一般富含CH4等还原性物质,CH4控制着成矿流体的氧化还原状态。CH4存在多种来源,例如,①地幔流体分异(Abrajano et al., 1988;Sugisaki et al., 1994;Beeskow et al., 2006;Liu et al., 2006)。Saxena等(1988)通过对碳质球粒陨石组成的原始地幔的相平衡计算得出,原始地幔流体主要成分是CH4(约90%),其次为H2和H2O。这些CH4流体在地球演化过程中向外逸散,在增生地幔中被捕获,影响着地壳中岩浆组成;②费托反应(Konnerup-Madsen, 2001;Sherwood Lollar et al., 2002;Potter et al., 2004;Nivin et al., 2005;Fiebig et al., 2009;Cao et al., 2014b)。反应原理为CO2或CO在催化剂表面形成活性碳物质,该物质与H2反应形成烷烃和烯烃物质,反应方程式为CO2+4Η2→CΗ4+2Η2O、CO+3Η2→CΗ42O(Holloway, 1984;Berndt et al., 1996;李昌昊等,2017);③石墨或碳质岩石的变质作用(Kenney et al., 2002;McCollom et al., 2007;李延河等,2020;Liu et al., 2022)。在高压条件下(>1.5 kbar),CH4可能来自与碳质围岩平衡的外来流体或水岩作用过程中岩浆流体内碳质组分的还原作用(Baker et al., 1999;李延河等,2020)。例如,澳大利亚Nevoria还原性矽卡岩型金矿床的赋矿变质沉积岩发育大量石墨,初始富CH4成矿流体来自于碳质沉积岩(Cullen et al., 1990;Mueller et al., 1997;Fan et al., 2000);④有机物热解作用或微生物过程(Des Marais et al., 1988;Whiticar, 1999;Rowins, 2000;Ueno et al., 2006)。一些微生物的代谢活动会产生CH4,其形成温度低于120℃。有机质热分解会生成烷类气体,还原性气体CH4/C2H6比值<100(Fiebig et a., 2009);⑤俯冲板片及上覆沉积物的脱水作用(Ballhaus, 1993; Takagi, 2004; Qiu et al., 2023)。俯冲板片上含碳沉积物中C和H2O反应生成CH4和CO2,通过去挥发分作用直接释放CH4(Song et al., 2009);⑥岩浆中碳质流体在镁铁质矿物蚀变(如橄榄石的蛇纹石化)过程中生成H2和CH4,相关反应方程式为橄榄石+H2O+C(或CO2)→磁铁矿+蛇纹石+水镁石+H2+CH4(Charlou et al., 2002;Mccollom et al., 2010;Dias et al., 2010;吴楚,2017;申萍等,2020)。

    图9 Bi-Au元素二元相图(引自Cockerton et al., 2012)

    Fig. 9 Binary phase diagram in the Bi-Au system (after Cockerton et al., 2012)


    8金的高效富集机制

    传统观点认为,与氧化性岩浆相比,还原性岩浆不利于金属元素的迁移和富集(Zajacz et al., 2013;Sun et al., 2014;刘星成等,2021)。但是实验地球化学研究发现,500℃时,Au在强氧化流体中的溶解度与强还原环境相比仅差约1.1个对数单位,岩浆热液系统氧逸度的高低对Au迁移没有明显影响(Gammons et al., 1997;Rowins, 2000;Pirajno, 2008;赵博等,2014;刘星成等,2021)。与其他类型金矿床相比,还原性矽卡岩金矿床以金高品位(5~15 g/t)著称。那么还原性岩浆-热液系统中Au如何高效运移富集并形成高品位金矿?

    还原性矽卡岩型金矿具有独特的Au-Bi-Te-As元素组合。As、Bi、Te、Sb、Pb、Se、Tl等元素统称为低熔点亲铜元素(LMCE),具有亲铜性、低熔点的特点,可在低至300℃条件下以熔体形式存在,如Bi-Au熔体的熔点可低至241℃,并优先从流体中分离出来(图9)(Okamoto et al., 1983;Ciobanu et al., 2006;Tooth et al., 2008;2011;刘家军等,2021;Deady et al., 2022)。LMCE熔体可以高效地捕获金等贵金属(Douglas et al., 2000;Tomkins et al., 2007;Tooth et al., 2008;2011;Biagioni et al., 2013;Mavrogenes et al., 2013;Holwell et al., 2010;2019;刘家军等,2021;Deady et al., 2022;Feng et al., 2023)。Au在低氧逸度条件下以氯络合物形式迁移,在高氧逸度条件以硫络合物形式运移(Zajacz et al., 2009)。Palomba等(2016)发现Au的氯络合物高度溶解在LMCE熔体中,并在后期降温过程中发生分解,形成Au原子(Au0)和Cl-。研究表明,热液中可以形成Au含量3%~5%的Bi-Te熔体和富Au的Te熔体,热液冷却后形成碲铋矿物+自然Au、碲金矿物+自然Au的矿物组合,Au-Bi-Te熔体可以从热液(即使是未饱和状态)中高效地捕获Au(Cockerton et al., 2012;刘家军等,2021)。这种Bi熔体可以高效地将Au从热液流体分离出来形成Au-Bi熔体(Meinert, 2000;Cabri, 2002;Tooth et al., 2008;2011;Acosta-Góngora et al., 2015;Wei et al., 2021;Feng et al., 2023),Au-Bi熔体的w(Au)甚至达到20%(Douglas et al., 2000;Cockerton et al., 2012)。Tomkins等(2002)发现澳大利亚Challenger金矿发育大量硫化物-金-铋-黑铋金矿“液滴”,超过95%的Au是通过这些LMCE熔体“液滴”在运移过程中不断汇聚而来的。

    流体温度、氧逸度及组成成分等因素控制着LMCE熔体对Au等贵金属的“捕获”作用(Douglas et al., 2000;Tooth et al., 2008;2011;刘家军等,2021;Wei et al., 2021;Feng et al., 2023)。温度是影响LMCE形成熔体的关键,当温度<300℃时,Bi、Pb、Sn、Tl和Hg形成熔体并富集贵金属,其余元素保持着固态。在高温条件下,Pb、Sn和Tl与H2O发生反应,Bi、Te、Sb、Hg、As和Se不溶于H2O,在流体中形成Bi、Te、Sb、Hg、As和Se熔体,而Pb、Sn和Tl以离子形式存在(曹锡章等,1994;刘家军等,2021)。流体氧逸度和组成成分控制着LMCE的分配系数(Li et al., 2013;2015;Zajacz et al., 2013)及熔体的形成,在高氧逸度时,Bi、Te以离子形式存在,在低氧逸度时,形成Bi、Te熔体(Tooth et al., 2008;2011;Grundler et al., 2013)。当含有Bi3+的氧化性流体与还原剂(如石墨、磁黄铁矿等)发生反应时,Bi3+还原为Bi熔体(Tooth et al., 2011),方程式为:Bi(OH)3(aq)=Bi(melt)+1.5H2O(aq)+3/4O2(aq)、(Bi2S2)2+(aq)+还原剂(s)→Bi(melt)(>271℃)。可见流体中Bi熔体呈乳滴状形成于石墨、磁黄铁矿等还原剂的边缘(Wang et al., 2019;刘家军等,2021)。由于Au-Bi-Te矿物相对于毒砂-砒毒砂-磁黄铁矿组合有着更低的熔点,Au-Bi-Te矿物经常存在于毒砂裂隙中(Fuertes-Fuente et al., 2000)。虽然辉铋矿是主要的含Bi矿物,但是辉铋矿有着非常高的熔融温度(775℃),导致辉铋矿在大多数情况下是一种效率很低的Au捕获体(Thompson et al., 2000;Hart, 2007)。

    图10 Bi-Bi2S3二元相图(引自Cockerton et al., 2012)

    Fig. 10 Binary phase diagram in the Bi-Bi2S3 system (after Cockerton et al., 2012)


    LMCE熔体在流体中捕获Au的过程类似于液相萃取,是利用Au在LMCE熔体和流体中的溶解度不同而实现的(Harwood et al., 1989;刘星成等,2021)。在300~450℃的条件下,Bi-Au熔体中Au含量比热液中Au含量高几个数量级,在任意温度条件下,液相Bi熔体与Au的结合能力远高于其他流体相(300℃时,w(Au)可达20%;Okamoto et al., 1983)。Au在Bi熔体和流体中的分配系数为DAuBi/fluid=2.3×108(450℃,Tooth et al., 2008)。因此,Bi-Te熔体从热液中提取Au的机制比流体饱和沉淀机制更高效。当氧逸度中等、硫含量低的流体温度高于271℃(自然Bi的熔点温度)时,液态Bi熔体从流体中分离出来,并持续捕获流体中的Au(Tooth et al., 2011)(图10)。与此同时,Bi的Te化物熔体也能高效地捕获Au,当流体经历不混溶、沸腾、水岩反应、氧化还原反应等过程时,Bi-Te熔体就会从流体中分离和沉淀,进而导致Au快速、高效的沉淀,形成具有经济价值的金矿床(Ciobanu et al., 2006;Simmons et al., 2016;McLeish et al., 2021;范宏瑞等,2021;刘家军等,2021;Wei et al., 2021;Feng et al., 2023)。在熔体-流体共存条件下,热液本身具有极强的流动性,熔体不需要长距离迁移就可以从流体中高效“捕获”金(Tooth et al., 2011;刘家军等,2021)。另外,由于Au在LMCE熔体与热液间的分配系数差异巨大,少量Bi-Te熔体就能完全捕获热液中金,最终形成高品位金矿床。

    9成矿模式

    目前,与还原性岩浆有关金矿床的成矿模式主要参考传统斑岩成矿模式(Thompson et al., 2000;Hart, 2007;Betsi et al., 2016)。北美Yukon、Alaska及Hedley地区还原性岩浆有关金矿(包含还原性矽卡岩型金矿)的研究程度最高,初步总结出还原性岩浆有关金成矿系统的地质特征和成矿模式(图11)。研究表明,还原性岩浆有关金成矿系统的蚀变矿化范围明显超出侵入岩体的规模,但仍限于侵入岩体的热反应场内。成矿系统受剥蚀深度的影响,成矿直径通常为几公里,矿化形成于岩体顶部和地表浅部。还原性成矿岩体规模小、孤立分布,发育晶洞和晶簇、UST结构石英(Thompson et al., 2000)。成矿岩浆具有富挥发分、高分异、流体出溶的特点。以成矿岩体为中心发育典型环带状金属元素分带(图11),类似于传统斑岩成矿系统(Jones, 1992)。受流体热力学梯度的影响,成矿岩体边部的蚀变矿化分带较窄,岩体顶部的元素分带范围较大。化学性质活泼和/或物理性质脆性的沉积岩地层控制着矿化多样性,岩体内部主要为席状石英脉型矿化(Thompson et al., 2000;Franchini et al., 2002;Hart, 2007;Betsi et al., 2016)。

    还原性高温岩浆流体侵入到岩体顶部脆性断裂中,形成云英岩型蚀变和浸染状金矿化。岩体顶部形成伟晶岩和/或长石-石英脉,脉体类型类似于花岗岩有关的W-Sn矿床。当还原性岩浆流体进入灰岩等钙质沉积岩地层时,形成矽卡岩型金矿化。矽卡岩型金矿化通常位于岩体近端,但是受某些构造控制,岩体远端也会发育矽卡岩型金矿化(图11)。当岩体发生矽卡岩化时,内矽卡岩带的K、Si元素含量增加,K2O/Na2O比值升高,Mg和Fe元素含量降低,Fe2O3/FeO比值降低。当岩体发生矽卡岩化时,岩体内原生镁铁质矿物发生分解作用,形成新生的钾长石、黑云母、石英及单斜辉石(内矽卡岩带)。当钙质沉积岩发生矽卡岩化时,形成黑云母-钾长石-钙铁辉石-钙铝/钙铁榴石矿物组合(外矽卡岩带)。随着矽卡岩化强度不断增加,外矽卡岩带的Fe、Mg和Mn含量增加,K2O/Na2O比值升高。岩体中镁铁质矿物的分解促进外矽卡岩带富集Fe。这些镁铁质矿物可能是矿体中Fe和Au的物质源区(Ray et al., 1992)。随着岩浆流体温度的降低,在中低温条件下岩浆热液中金、硫化物、碲化物、铋化物、方柱石等矿物不断沉淀(Ray et al., 1992)。大多数矽卡岩富含白钨矿,叠加后期中低温Au矿化(Mair, 2005)。当岩浆热液运移至浅部近地表时,可能形成角砾岩型金矿化(Hart et al., 2000; Mair et al., 2006a; Hart, 2007)。同时,近地表可能发育大规模细脉或浸染状金矿化,含有较高含量贱金属(Thompson et al., 2000;Franchini et al., 2002;Mair et al., 2006a;2006b;Hart, 2007;Betsi et al., 2016)。

    图11北美Yukon、Alaska地区Tintina金矿省还原性侵入岩有关金成矿系统成矿模式平面示意图(改自Hart, 2007)

    Fig.11 General plan scketch of ore-forming model of reduced intrusion related gold system in Tintina gold province from Yukon-Alaska region of the North Ameria (modified from Hart, 2007)


    综上所述,还原性矽卡岩型金成矿系统的成矿模式仍不完善,可能并不适用于一些金矿床,但是随着科学研究工作的不断深入,还原性岩浆成矿模式有望为金矿找矿勘查工作提供新线索。

    10找矿标识

    在成矿区(带)尺度上,还原性矽卡岩型金矿的成矿规律和找矿标识包括:①成矿区(带)大多呈线状或带状展布,形成于岩浆弧、弧后或碰撞造山带等多种构造背景。例如北美科迪勒拉造山带内Alaska、Yukon和Hedley还原性岩浆有关金矿分布区(带);②广泛发育还原性I或S型花岗岩体,部分区域发育同期火山-次火山岩。还原性成矿岩体主要为含钛铁矿辉长闪长岩、花岗闪长岩和闪长岩等。岩体含有少量钛铁矿,显示微弱的航磁信号;③广泛发育W±Sn、Mo和Bi矿化,这些矿化的规模可能较小,甚至没有经济价值;④存在众多金矿化岩体或者少量金矿床(点),例如北美Alaska、Yukon地区发育众多白垩纪金矿化岩体;⑤发育大面积的钙质沉积岩(Thompson et al. 2000;Hart, 2007;李建威等,2019)。

    在矿田尺度上,还原性矽卡岩型金矿的找矿标识有:①成矿岩体显示流体出溶的地质现象,例如晶洞、伟晶岩、细晶岩及UST结构等。成矿岩体显示金异常。小岩体通常比大岩体更有金成矿与找矿潜力;②成矿岩体富铁、全岩Fe2O3/FeO比值低、磁黄铁矿/黄铁矿比值高(Ray et al., 1992);③一些矽卡岩发育W矿化,这类矽卡岩的Au含量变化较大,例如美国Fairbanks地区一些含W矽卡岩作为Au矿开采(Newberry et al., 1997);④成矿系统具有金属元素分带特征。Bi、Te、W和Mo元素在岩体内和近端富集,Ag、Sb和/或贱金属元素在岩体远端富集。W±Mo元素存在于岩体内部和顶部,Au-As-Bi元素位于岩体上部和浅部;⑤部分成矿后断裂控制着矿体,例如后期垂直断裂或断裂侧向偏移可能影响着蚀变矿化的位置和类型,甚至截断矿体,进而干扰找矿方向;⑥Bi、Te、As、Sb、Hg、Se和Co元素是有效的勘探元素组合(Hale, 1981;Phillips et al., 2015)。例如,土壤和河流中Bi、Te、As、Se和Co元素异常是矽卡岩型金矿的有效找矿线索(Theodore et al., 1991)。当某地发现砂金与Bi矿物(Bi氧化物或Bi碲化物)共生,暗示该地区上游可能存在含Au矽卡岩(Theodore et al., 1991;Thompson et al., 2000;Hart, 2007;李建威等,2019;Deady et al., 2022)。

    11关键科学问题或薄弱环节

    近年来,还原性矽卡岩型金矿作为一个独立的金矿类型在全球范围内被大量发现,但是综合研究程度仍较低,存在一些科学问题或薄弱环节(Ray et al., 1992;Thompson et al., 2000; Hart, 2007;李建威等,2019;Deady et al., 2022),例如:①一些金矿床的成因类型存在争议,包括澳大利亚Nevoria、加拿大Lupin和塔吉克斯坦Jilau等金矿存在着“还原性矽卡岩型金矿”和“造山型金矿”等观点(Mueller, 1997;Cole et al., 2000;Geusebroek et al., 2004)。部分还原性矽卡岩型金矿可能长期被认定为其他类型金矿,还原性矽卡岩型金矿与其他类型金矿的区分及成因联系仍需深入研究;②还原性岩浆存在温度、盐度、压力、氧逸度、硫逸度、含水量、还原性组分类型及含量等属性,哪些属性是形成还原性矽卡岩型金矿的关键因素?③Au在岩浆热液中可能以氯络合物、硫络合物、Bi-Te熔体、纳米絮状物等方式运移,哪种是还原性岩浆热液中Au的高效迁移方式?④还原性岩浆的氧化-还原状态有争议,部分学者认为母岩浆始终为还原性(Rowin, 2000;Smithson, 2004;Smith et al., 2012;Cao et al., 2014a;2014b),另有一些专家认为母岩浆最初为氧化性,后期混入多来源的还原性组分,最终形成还原性岩浆(Shen et al., 2013;2015;Xie et al., 2018;Zhu et al., 2018;Wei et al., 2019);⑤还原性岩浆有关金矿系统深部存在W-Mo矿化,浅部发育Au-Sb-Bi矿化,存在明显的金属元素分带现象,这种分带规律受哪些因素控制?围岩在金属元素分带形成过程中有哪些贡献?⑥与氧化性中酸性岩浆相比,还原性中酸性岩浆更有利于LILE(如Rb等)和HFSE的富集(Dall’Agnol et al., 2007;Yuan et al., 2018;Cámera et al., 2020;Mao et al., 2021;张飞等,2023),但是还原性岩浆中Rb等稀有金属的来源、运移及富集机理还不清楚。

    12成矿潜力及找矿前景

    还原性矽卡岩型金矿形成的地质要素为还原性岩体和碳酸盐岩地层。碳酸盐岩地层在中国分布广泛,形成时间跨度大,从太古代至全新世(Chang et al., 2019,图2)。在中国一些区域,虽然地表不出露碳酸盐岩地层,但是推测深部存在碳酸盐岩地层。例如,华北克拉通地表石炭纪碎屑沉积岩下部可能存在中元古代—奥陶纪碳酸盐岩(BGMHB, 1989;Chang et al., 2019)。中国碳酸盐岩地层不仅分布面积广,而且厚度巨大,例如,华北克拉通(河北省境内)中-新元古代地层主要为富Mg碳酸盐岩和硅质碎屑岩,地层厚度变化大,介于43~9200 m;寒武纪—中奥陶世地层为碳酸盐岩,厚度介于622~1529 m(BGMHB, 1989;Chang et al., 2019)。目前,还原性岩浆岩在国内分布较集中,主要分布在华南地区(江南造山带、长江中下游地区、南岭地区),部分位于西天山、东昆仑-西秦岭和佳木斯地块(图2、表3)。华南地区还原性岩浆岩主要形成钨锡矿化,岩石类型有黑云母花岗岩、白云母花岗岩、二云母花岗岩、花岗斑岩等,属于钛铁矿系列普通A型、高分异A型、高分异I型或S型花岗岩,形成时间集中在早白垩世,其次为晚三叠世;西天山及邻区还原性岩浆岩形成铜矿床,岩石类型有花岗闪长岩、石英闪长岩和黑云母花岗岩,属于钛铁矿系列I型花岗岩,形成于晚石炭世;东昆仑-西秦岭地区还原性岩浆岩形成铜金矿床,岩石类型有石英闪长岩,属于钛铁矿系列I型花岗岩,侵位时间为晚三叠世;黑龙江省佳木斯地块内发育早侏罗世和早白垩世两期还原性岩浆岩,均形成金矿床,岩石类型为辉长闪长岩和闪长岩,属于钛铁矿系列I型花岗岩。


    表3中国代表性还原性岩体地质特征

    Table 3 Geological characteristics of representative reduced intrusive rocks in China

    岩体

    名称

    地理位置

    构造位置

    岩性

    年龄

    类型

    相关矿化

    构造背景

    岩浆源区

    资料来源

    包古图Ⅲ号

    新疆包

    古图

    巴尔喀什-准格尔地体

    花岗闪长岩、

    石英闪长岩

    (313±3)~(319±3)Ma(锆石U-Pb)

    I型

    铜矿化

    岛弧

    交代亏损地幔部分熔融,古老地壳混染很弱

    魏少妮等,

    2015

    色勒特果勒

    新疆色勒特果勒

    西天山地区

    黑云母花岗岩

    (307.5±3.3)Ma

    (锆石U-Pb)

    I型

    铜矿化

    岛弧环境

    新生下地壳部分熔融

    张伟,2017

    德乌鲁

    甘肃夏河-合作

    西秦岭地区

    石英闪长岩

    (238.6±1.5)Ma

    (锆石U-Pb)

    I型

    金铜矿化

    陆缘弧

    富集地幔来源基性岩浆与壳源酸性岩浆混合

    李建威等,

    2019

    赛什塘

    青海赛

    什塘

    东昆仑地区

    石英闪长岩

    (222.7±2.3)Ma

    (锆石U-Pb)

    I型

    铜矿化

    后碰撞伸展背景

    加厚下地壳变质基底部分熔融

    王辉,2016

    纳如

    松多

    西藏纳如松多

    冈底斯造

    山带

    石英闪长岩

    (85.2±1.1)Ma

    (锆石U-Pb)

    I型

    碰撞造山前

    陆壳部分熔融

    龚雪婧等,

    2018

    锡山

    广东锡山

    阳春盆地

    黑云母花岗岩

    (81.0±0.8)Ma~(79.4±1.2)Ma

    (锆石U-Pb)

    A型

    钨锡矿化

    伸展背景

    陆壳部分熔融

    汪祖豪,2017

    长岭尖

    安徽长

    岭尖

    江南造山带

    花岗斑岩

    (122.7±1.8)Ma

    (锆石U-Pb)

    A型

    钨铷矿化

    板内伸展

    麻粒岩相地壳部分

    熔融

    张飞等,

    2023

    平苗

    江西大

    湖塘

    江南造山带

    二云母花岗岩、白云母花岗岩

    139~145 Ma

    (独居石U-Pb)

    高分异S型

    钨铜矿化

    挤压-伸展转换期

    富泥质变质沉积岩和变质玄武岩

    樊献科等,

    2020

    香炉山

    江西香

    炉山

    长江中下游

    黑云母花岗岩

    (126.2±2.6)Ma

    (全岩Rb-Sr)

    高分异I/S型

    钨矿化

    板内拉张环境

    壳源富黏土物质

    张家菁等,2008;赵文等,2022

    王仙岭

    湖南王

    仙岭

    南岭地区

    电气石二云母花岗岩

    (235.0±1.3)Ma

    (锆石U-Pb)

    高分异S型

    钨矿化

    碰撞造山背景

    上地壳变质沉积岩部分熔融

    章荣清等,2016;郑佳浩等,2012

    荷花坪

    湖南荷

    花坪

    南岭地区

    黑云母花岗岩

    (142±2)Ma

    (锆石U-Pb)

    高分异A型

    锡矿化

    伸展背景

    下地壳变质基底部分熔融

    章荣清等,2016;蔡明海等,2016

    大安河

    黑龙江省大安河

    佳木斯地块

    辉长闪长岩

    (185.8±1.3)Ma~(183.7±1.3)Ma

    (锆石U-Pb)

    I型

    金矿化

    活动大陆边缘弧

    俯冲流体交代地幔楔,混入少量地壳物质

    赵春涛,2021

    老柞山

    黑龙江老柞山

    佳木斯地块

    闪长岩

    (103.2±1.0) Ma

    (锆石U-Pb)

    I型

    金矿化

    弧后拉张环境

    新生下地壳或岩石圈地幔

    赵春涛,2021;本文未发表数据

    还原性矽卡岩型金矿分布区经常与钨锡成矿区(带)重叠,中国境内钨锡矿床分布十分广泛。中生代以来,受太平洋板块俯冲作用的影响,在中国东部地区形成了众多钨锡成矿区(带)(Mao et al., 2019;毛景文等,2020),区域上与大规模金成矿区(带)重叠,表明中国东部具有寻找还原性矽卡岩型金矿床的广阔前景。这些Au/W/Sn成矿区(带)叠加区域发育大规模中生代钙碱性花岗质岩浆和碳酸盐岩地层,是形成还原性矽卡岩型金矿床的有利地段,例如长江中下游、南岭地区、江南造山带及佳木斯地块等地区。中国西天山、东昆仑-西秦岭地区也发育较多还原性岩浆岩及相关矽卡岩,晚石炭世和晚三叠世还原性中酸性岩浆岩发育地区具有较好的金成矿潜力。

  • 参考文献

      Abrajano T A, Sturchio N C, Bohlke J K, Lyon G L, Poreda R J and Stevens C M. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin[J]? Chemical Geology, 71(1-3): 211-222.

      Acosta-Góngora P, Gleeson S A, Samson I M, Ootes L and Corriveau L. 2015. Gold refining by bismuth melts in the iron-dominated NICO Au-Co-Ni (±Cu±W) deposit, NWT, Canada[J]. Econ.Geol., 110(2): 291-314.

      Ague J J and Brimhall G H. 1987. Granites of the batholiths of California: Products of local assimilation and regional-scale crustal contamination[J]. Geology, 15(1): 63-66.

      Ague J J and Brimhall G H. 1988. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory mi-nerals in the batholiths of California[J]. Geological Society of America Bulletin, 100(6): 891-911.

      Anderson R G. 1988. An overview of some Mesozoic and Tertiary plutonic suites and their associated mineralization in the northern Canadian Cordillera[J]. Canadian Institute of Mining and Metallurgy, 39: 96-113.

      Baker T and Lang J R. 1999. Geochemistry of hydrothermal fluids associated with intrusion-hosted gold mineralization, Yukon Territory[A]. In: Stanley C J, eds. Mineral deposits: Processes to processing[C]. Proceedings of the 5th Biennial Society for Geology Applied to Mineral Deposits Meeting and the 10th Quadrennial IAGOD Symposium, London, August 22-25, 17-20.

      Baker T and Lang J R. 2001, Fluid inclusion characteristics of intrusion related gold mineralization, tombstone-tungsten magmatic belt, Yukon Territory, Canada[J]. Mineralium Deposita, 36: 563-582.

      Bakke A A. 1995. Porphyry deposits of the northwestern Cordillera[J]. Canadian Institute of Mining, Metallurgy, and Petroleum, 46: 795-802.

      Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle[J]. Contributions to Mineralogy and Petrology, 114(3): 331-348.

      Beeskow B, Treloar P J, Rankin A H, Vennemann T W and Spangenberg J. 2006. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia[J]. Lithos, 91: 1-18.

      Bell A S and Simon A. 2011. Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine bearing aqueous volatiles[J]. Geology, 39(5): 499-502.

      Berndt M E, Allen D E and Seyfried W E. 1996. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bar[J]. Geology, 24(4): 351-354.

      Betsi T B, Lentz D R and Mcfarlane C. 2016. The nucleus deposit: Superposed Au-Ag-Bi-Cu mineralization systems at Freegold Mountain, Yucon, Canada[J]. Resource Geology, 66: 419-454.

      BGMHB (Bureau of Geology and Mineral Resources of the Hebei Province). 1989. Regional geology of Hebei Province[M]. Beijing: Geological Publishing House. 748(in Chinese).

      Biagioni C, D’Orazio M, Vezzoni S, Dini A and Orlandi P. 2013. Mobilization of Tl-Hg-As-Sb-(Ag, Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy)[J]. Geo-logy, 41(7): 747-750.

      Billingsley P and Hnme C B. 1941. The ore deposits of Nickel Plate Mountain, Hedley, B.C[J]. Canadian Institute of Mining and Me-tallurgy Bulletin, 44: 524-590.

      Brounce M, Stolper E and Eiler J. 2017. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(34): 8997-9002.

      Burisch M, Bussey S D, Landon N, Nasi C, Kakarieka A, Gerdes A, Albert R, Stein H J, Gabites J A, Friedman R M and Meinert L D. 2023. Timing of magmatism and skarn formation at the Limon, Guajes, and Media Luna gold±copper skarn deposits at Morelos, Guerrero State, Mexico[J]. Econ. Geol., 118: 695-718.

      Burnham C W. 1979. Magma and hydrothermal fluids[R]. In: Barnes H L. ed., Geochemistry of hydrothermal ore deposits, second edition[M]. New York: Wiley, 71-136.

      Cabri L J. 2002. The geology, geochemistry, mineralogy and mineral beneficiation of the platinum group elements[M]. Canadian Institute of Mining, Metallurgy and Petroleum, 13-129.

      Cai M H, Zhang W B, Peng Z A, Liu H, Guo T F, Tan Z M and Tang L F. 2016. Study on minerogenetic epoch of the Hehuaping tin-polymetallic deposit in southern Hunan[J]. Acta Petrologica Sinica, 32(7): 2111-2123(in Chinese with English abstract).

      Cámera M M M, Dahlquist J A, Garcia-Arias M, Moreno J A, Galindo C, Basei M A S and Molina J F. 2020. Petrogenesis of the F-rich peraluminous A-type granites: An example from the Devonian Achala batholith (Characato Suite), Sierras Pampeanas, Argentina[J]. Lithos, 378- 379: 105792.

      Cao M J, Li G M, Qin K Z, Jin L Y, Evans N J and Yang X R. 2014a. Baogutu: An example of reduced porphyry Cu deposit in western Junggar[J]. Ore Geology Reviews, 56: 159-180.

      Cao M J, Qin K Z, Li G M, Evans N J and Jin L Y. 2014b. Abiogenic Fischer-Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China[J]. Geochimica et Cosmochimica Acta, 141: 179-198.

      Cao M J, Qin K Z, Li G M, Evans N J and Jin L Y. 2015. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, western Junggar, NW China[J]. Ore Geology Reviews, 65: 940-954.

      Cao M J, Qin K Z, Li G M, Evans N J, Hollings P and Jin L Y. 2016. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China[J]. Lithos, 246-247: 13-30.

      Cao X Z, Song T Y and Wang X Q. 1994. Inorganic chemistry. 3rd Edition[M]. Beijing: Higher Education Press. 495-508(in Chinese).

      Cepedal A, Fuertes-Fuente M, Martín-Izard A, González-Nistal S and Rodríguez-Pevida L. 2006. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: Genetic implications in Cu-Au and Au skarns[J]. Mineralogy and Petrology, 87(3): 277-304.

      Chang Z S, Shu Q H, Meinert L D. 2019. Skarn deposits of China[J]. Econ. Geol., 22: 189-234.

      Chappell B W and White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173-174.

      Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P and Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′ N, MAR)[J]. Chemical Geology, 191: 345-359.

      Chen J B and Yu L H. 2020. Comparative analysis of mineral resources situation between China, America and Europe[M]. Beijing: Geological Publishing House. 1-173(in Chinese).

      Chen Y C, Wang D H, Zhu Y S, Xu Z G, Wang S C, Zai Y S, Tang Z L, Pei R F, Shen B F and Xiao K Y. 2007. Metallogenic system and regional metallogenic evaluation in China[M]. Beijing: Geological Publishing House. 1-1005(in Chinese).

      Chen Y J, Chen H Y, Zaw K, Pirajno F and Zhang Z J. 2004. The geodynamic setting of large-scale metallogenesis in China, exemplified by skarn type gold deposits[J]. Earth Science Frontiers, 11(1): 57-83(in Chinese with English abstract).

      Chen Y J, Chen H Y, Zaw K, Pirajno F and Zhang Z J. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview[J]. Ore Geology Reviews, 31: 139-169.

      Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C and Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrologica Sinica, 23(9): 2085-2108(in Chinese with English abstract).

      Christopher D H, John D A, Leonardson R W, Mclntosh W C, Heizler M T, Colgan J P and Watts K E. 2023. Timing of rhyolite intrusion and carlin type gold mineralization at the Cortez Hills carlin type deposit, Nevada, USA[J]. Econ. Geol., 118: 57-91.

      Ciobanu C L, Cook N J and Spry P G. 2006. Preface: Special Issue: Telluride and selenide minerals in gold deposits: How and why[J]? Mineralogy and Petrology, 87(3): 163-169.

      Ciobanu C L, Birch W D, Cook N J, Pring A and Grundler P V. 2010. Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, Central Victorian gold province, Australia[J]. Lithos, 116(1-2): 1-17.

      Cline J. 2004. Introduction to Carlin-type deposits[J]. Society of Economic Geologists Newsletter, 59:11-12.

      Cline J S, Hofstra A H, Mnntean J L, Tosdal R M and Hickey K A. 2005. Carlin-type gold deposits in Nevada: Critical geologic cha-racteristics and viable models[J]. Economic Geology 100th Anniversary Volume: 451-484.

      Cockerton A B D and Tomkins A G. 2012. Insights into the liquid bismuth collector model through analysis of the Bi-Au Stormont skarn prospect, Northwest Tasmania[J]. Econ. Geol., 107(4): 667-682.

      Cole A, Wilkinson J J, Halls C and Serenko T J. 1999. Geological cha-racteristics, tectonic setting and preliminary interpretations of the Jilau gold-quartz vein deposit, Tajikistan[J]. Mineralium Deposita, 35: 600-618.

      Cole A, Wilkinson J J, Halls C and Serenko T J. 2000. Geological cha-racteristics, tectonic setting, and preliminary interpretations of the Jilau gold-quartz vein deposit, Tajikistan[J]. Mineralium Deposita, 35: 600-618.

      Cullen I, Jones M and Baxter J L. 1990. Nevoria gold deposits[A]. In Hughes F E, ed., Geology of the mineral deposits of Australia and Papua New Guinea[C]. Melbourne: Australian Institute of Mining and Metallurgy. 301-305.

      Dall'Agnol R and de Oliveira D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 93 (3-4): 215-233.

      de la Garza V, Téllez R and Hernández A. 1996. Geology of the Bermejal iron-gold deposit, Mezcala, Guerrero, Mexico[A]. In: Coyner A H and Fahey P L eds., Geology and ore deposits of the American Cordillera, Reno/Sparks[C]. Nevada:Geological Society of Nevada, 3: 1355-1368.

      Deady E, Moon C, Moore K, Goodenough K M and Shail R K. 2022. Bismuth: Economic Geology and value chains[J]. Ore Geology Reviews, 143: 104722.

      Deng J, Wang Q F, Li G J, Hou Z Q, Jiang C Z and Leonid D. 2015. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 70: 457-485.

      Des Marais D J, Stallard M L, Nehring N L and Truesdell A H. 1988. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico[J]. Chemical Geology, 71: 159-167.

      Dias A S, Mills R A, Ribeiro da Costa I, Costa R, Taylor R N, Cooper M J and Barriga F J A S. 2010. Tracing fluid rock reaction and hydrothermal circulation at the Saldanha hydrothermal field[J]. Chemical Geology, 273: 168-179.

      Douglas N, Mavrogenes J, Hack A and England R. 2000. The liquid bismuth collector model: An alternative gold deposition mechanism[R]. 135.

      Duncan R A. 1999. Physical and chemical zonation in the Emerald lake pluton, Yukon Territory. Unpublished M.Sc[R]. University of British Columbia, 178.

      Dziggel A, Wulff K, Kolb J and Meyer F M. 2010. Processes of high-Tfluid-rock interaction during gold mineralization in carbonate-bearing metasediments: The Navachab gold deposit, Namibia[J]. Mineralium Deposita, 44: 665-687.

      Einaudi M T, Meinert L D and Newberry R J. 1981. Skarn deposits[J]. Econ. Geol., 75th Anniversary Volume: 317-391.

      Ettlinger A D and Meinert L D. 1991. Copper-gold skarn mineralization at the Veselyi mine, Sininkhinskoe district, Siberia, USSR[J]. Econ. Geol., 86: 185-194.

      Ettlinger A D, Meinert L D and Ray G E. 1992. Gold skarn mineralization and fluid evolution in the Nickel Plate deposit, Hedley district, British Columbia[J]. Econ. Geol., 87: 1541-1565.

      Fan H R, Groves D I, Mikucki E J and McNaughton N J. 2000. Contrasting fluid types at the Nevoria gold deposit in the southern Cross greenstone belt, western Australia: Implications of Aurife-rous fluids depositing ores within an Archean banded iron-formation[J]. Econ. Geol., 95: 1527-1536.

      Fan H R, Lan T G, Li X H, Santosh M, Yang K F, Hu F F, Feng K, Hu H L, Peng H W and Zhang Y W. 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong Province, eastern China[J]. Scientia Sinica (Terrae), 51(9):1504-1523(in Chinese).

      Fan X K, Zhang Z Y, Hou Z Q, Pan X F, Zhang X, Sheng Y C, Dai J L and Wu X Y. 2020. Mineralogical characteristics and its metallogenic implications of ore-bearing granites in the Pingmiao W-Cu deposit, Dahutang tungsten ore field, South China[J]. Acta Petrologica Sinica, 36(12): 3757-3782(in Chinese with English abstract).

      Feng H X, Shen P, Zhu R X, Tomkins A G, Brugger J, Ma G, Li C H and Wu Y. 2023. Bi/Te control on gold mineralizing processes in the North China Craton: Insights from the Wulong gold deposit[J]. Mineralium Deposita, 58: 263-286.

      Fiebig J, Woodland A B, Alessandro W D and Püttmann W. 2009. Excess methane in continental hydrothermal emissions is abiogenic[J]. Geology, 37(6): 495-498.

      Fuertes-Fuente M, Martin-Izard A, Garcia Nieto j, Maldonado C and Varela A. 2000. Preliminary mineralogical and petrological study of the Ortosa Au-Bi-Te ore deposit: A reduced gold skarn in the northern part of the Rio Narcea gold belt, Asturias, Spain[J]. Journal of Geochemical Exploration, 71: 177-190.

      Gammons C H, Yu Y and Williams-Jones A E. 1997. The disproportionation of gold chloride complexes at 25 to 200℃[J]. Geochimica et Cosmochimica Acta, 61: 1971-1983.

      Gaspar, M, Knaack C, Meinert L D and Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 72: 185-205.

      Geusebroek P A and Duke N A. 2004. An update on the geology of the Lupin gold mine, Nunavut, Canada[J]. Exploration and Mining Geology, 13: 1-13.

      Goldfarb R J, Miller L D, Leach D L and Snee L W. 1997. Gold depo-sits in metamorphic rocks of Alaska[J]. Economic Geology Monograph, 9: 151-190.

      Goldfarb R, Hart C, Miller M, Miller L, Farmer G L and Groves D. 2000. The Tintina gold belt: A global perspective[J]. British Columbia and Yukon Chamber of Mines, Special Volume, 2: 5-34.

      Goldfarb R J, Bake T, Dubé B, Groves D I, Hart C J R and Gosselin P. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes[J]. Economic Geology, 100th Anniversary Volume: 407-450.

      Goldfarb R J and Pitcairn L. 2023. Orogenic gold: is a genetic association with magmatism realistic[J]? Mineralium Deposita, 58: 5-35.

      Gong X J, Yang Z S, Zhao X Y, Zhang X and Guan W Q. 2018. Formation mechanism of Late Cretaceous intrusive rocks in Narusongduo Pb-Zn deposit, Tibet: Evidence from magmatic zircon[J]. Mineral Deposits, 37(1): 91-104(in Chinese with English abstract).

      Gordey S P and Anderson R G. 1993. Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories[R]. Geological Survey of Canada, Memoir, 248: 214.

      Grocke S B, Cottrell E, de Silva S and Kelley K A. 2016. The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas[J]. Earth and Planetary Science Letters, 440: 92-104.

      Groves D I, Santosh M, Goldfarb R J and Zhang L. 2018. Structural geometry of orogenic gold deposits: implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 9: 1163-1177.

      Grundler P V, Brugger J, Etschmann B E, Helm L, Liu W H, Spry P G, Tian Y, Testemale D and Pring A. 2013. Speciation of aqueous tellurium (IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition[J]. Geochimica et Cosmochimica Acta, 120: 298-325.

      Hale M. 1981. Pathfinder applications of arsenic, antimony and bismuth in geochemical exploration[M]. Developments in Economic Geology Elsevier, 307-323.

      Hart C J R, Baker T and Burke M. 2000. New exploration concepts for country-rock hosted, intrusion-related gold systems, Tintina gold Belt[J]. British Columbia and Yukon Chamber of Mines, 2: 145-172.

      Hart C J R. 2004. Mid-Cretaceous magmatic evolution and intrusion-related metallogeny of the Tintina gold province, Yukon and Alaska[D]. University of Western Australia.1-198.

      Hart C J R, Goldfarb R J, Lewis L L and Mair J L. 2004. The Northern Cordillera Mid-Cretaceous Plutonic Province: Ilmenite/magnetite-series granitoids and intrusion-related mineralization[J]. Resource Geology, 54: 253-280.

      Hart C J R, Mair J L, Goldfarb R J and Groves D I. 2005. Source and redox controls of intrusion-related metallogeny, Tombstone-Tungsten Belt, Yukon, Canada[R]. Transactions of the Royal Society of Edinburgh: Earth Science, 95: 339-356.

      Hart C J R. 2007. Reduced intrusion-related gold systems[A]. In: Goodfellow W D. ed., Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological Provinces, and exploration methods[C]. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 95-112.

      Harwood L M, Moody C J and Percy J M. 1989. Experimental organic chemistry: Principles and practice. 2nd Edition[M]. Oxford: Blackwell Scientific Publications. 1-778.

      He W Y, Mo X X, He Z H, White N C, Chen J B, Yang K H and Wang R. 2015. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, Southwest China[J]. Econ. Geol., 110: 1625-1641.

      Henry C D and Boden D R. 1998. Eocene magmatism: The heat source for Carlin-type gold deposits of northern Nevada[J]. Geology, 26: 1067-1070.

      Henry C D, John D A, Leonardson R W, McIntosh W C, Heizler M T, Colgan J P and Watts K E. 2023. Timing of rhyolite intrusion and carlin-type gold mineralization at the Cortez Hills carlin-type deposit, Nevada, USA[J]. Econ. Geol., 118: 57-91.

      Holloway J R. 2004. Redox reactions in seafloor basalts: Possible insights into silicic hydrothermal systems[J]. Chemical Geology, 210(1-4): 225-230.

      Holwell D A and McDonald I. 2010. A review of the behavior of platinum group elements within natural magmatic sulfide ore systems[J]. Platinum Metals Review, 54(1): 26-36.

      Holwell D A, Fiorentini M, McDonald I, Lu Y J, Giuliani A, Smith D J, Keith M and Locmelis M. 2019. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism[J]. Nature Communications, 10: 3511.

      Ishihara S. 1981. The granitoid series and mineralization[J]. Economic Geology 75th Anniversary Volume: 458-484.

      Jones B K. 1992. Application of metal zoning to gold exploration in porphyry copper systems[J]. Journal of Geochemical Exploration, 43: 127-155.

      Kelley K A and Cottrell E. 2012. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma[J]. Earth and Planetary Science Letters, 329-330: 109-121.

      Kenney J F, Kutcherov V A, Bendeliani N A and Alekseev V A. 2002. The evolution of multicomponent systems at high pressures:Ⅵ. The thermodynamic stability of the hydrogen-carbon system: The genesis of hydrocarbons and the origin of petroleum[J]. Proceedings of the National Academy of Sciences of the United States of America, 99(17): 10976-10981.

      Kim E J, Park M E and White N C. 2012. Skarn gold mineralization at the Geodo Mine, South Korea[J]. Econ. Geol., 107(3): 537-551.

      Kolb J, Dziggel A and Bagas L. 2015. Hypozonal lode gold deposits: A genetic concept based on a review of the New Consort, Renco, Hutti, Hira Buddini, Navachab, Nevoria and The granites depo-sits[J]. Precambrian Research, 262: 20-44.

      Konnerup-Madsen J. 2001. A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland[J]. Geology of Greenland Survey Bulletin, 190: 159-166.

      Lang J R. Baker T, Hart C J R and Mortensen J K. 2000. An exploration model for intrusion-related gold systems[J]. Society of Econ. Geol. 40: 6-15.

      Lang J R. 2001. Regional and system-scale controls on the formation of copper and or gold magmatic-hydrothermal mineralization[J]. University of British Columbia Mineral Deposit Research Unit,  2: 115.

      Lawrence D M, Allibone A H, Chang Z, Meffre S, Lambert-Smith J S and Treloar P J. 2017. The Tongon Au deposit, Northern Côte d’Ivoire: An example of Paleoproterozoic Au skarn mineralization[J]. Econ. Geol., 112: 1571-1593.

      Li C H, Shen P, Pan H D and Cao C. 2017. Forming mechanism of the reducing gas from mineralization fluid in West Junggar of Xinjiang, China[J]. Journal of Earth Sciences and Environment, 39(3): 386-396(in Chinese with English abstract).

      Li J W, Sui J X, Jin X Y, Wen G, Chang J, Zhu R, Zhan H Y and Wu W H. 2019. The intrusion-related gold deposits in the Xiahe-Hezuo district, West Qinling Orogen: Geodynamic setting and exploration potential[J]. Earth Science Frontiers, 26(5): 17-32(in Chinese with English abstract).

      Li Y and Audétat A. 2013. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation[J]. Geochimica et Cosmochimica Acta, 118: 247-262.

      Li Y and Audétat A. 2015. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochimica et Cosmochimica Acta, 162: 25-45.

      Li Y H, Duan C, Zeng P S, Jian W, Wan Q, Hu G Y, Zhao X Y and Wu X P. 2020. The role of reductive carbonaceous strata in the formation of porphyry copper ores[J]. Acta Geoscientia Sinica, 41(5): 637-650(in Chinese with English Abstract).

      Liu J, Mao J W, Lai C K, Wang X T, He J C and Xie H J. 2022. Contrasting geochemical signatures between fertile and barren granites and multi-isotope (Sr-Nd-Pb-S-He) study in the Lamasu-Saibo deposit, NW China: Implications for petrogenesis and ore genesis[J]. Ore Geology Reviews, 149:105114.

      Lin J C, Sharma R C and Chang Y A. 1996. The Bi-S (bismuth-sulfur) system[J]. Journal of Phase Equilibria, 17(2): 132-139.

      Liu J J, Wang D Z, Zhai D G, Xia Q, Zheng B, Gao S, Zhong R C and Zhao S J. 2021. Super-enrichment mechanisms of precious metals by low-melting point copper-philic element (LMCE) melts[J]. Acta Petrologica Sinica, 37(9): 2629-2656(in Chinese with English Abstract).

      Liu W and Pan X F. 2006. Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion: The mantle dynamics underneath the Palaeo-Asian Ocean through to the post-collisional period[J]. Earth and Planetary Science Letters, 242(3-4): 286-301.

      Liu X C, Xu T, Xiong X L, Li L and Li J W. 2021. Gold solubility in silicate melts and fluids: Advances from high-pressure and high-temperature experiments[J]. Science China Earth Sciences, 64(9): 1481-1491(in Chinese).

      Long K, Ludington S, du Bray E, André-Ramos O and McKee E H. 1992. Geology and mineral deposits of the La Joya district, Bolivia[J]. Society of Economic Geologists Newsletter, 10: 13-16.

      Lu Y C, Liu J J, Zhang D, Wang D Z, Sun H, Wang B, Zhang W H and Kang J K. 2017. Zircon U-Pb LA-ICP-MS dating, petrogenesis and tectonic implication of the granodiorite at the Shuangpengxi skarn type gold-copper deposit, West Qinling[J]. Acta Petrologica Sinica, 33(2): 545-564(in Chinese with English abstract).

      Ma R, Huang M L, Xu L L, Bi X W and Liu G. 2020. Magmatic oxygen fugacity of the Cenozoic mantle-derived potassic-ultrapotassic rocks in the western margin of the Yangtze Craton and its implication for the intracontinental porphyry mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(4): 794-809(in Chinese with English Abstract).

      Mair J L, Goldfarb R J, Johnson C A, Hart C J R and Marsh E E. 2006a. Geochemical constraints on the genesis of the Scheelite Dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada[J]. Econ. Geol., 101: 523-553.

      Mair J L, Hart C J R and Stephens J. 2006b. Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism[J]. Geological Society of America Bulletin, 118: 304-23.

      Mair J L, Farmer G L, Groves D I, Hart C J R and Goldfarb R J. 2011.Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems[J]. Econ. Geol., 106(3): 451-480.

      Maloof T L, Baker T and Thompson J F H. 2001. The Dublin Gulch intrusion hosted deposit, Tombstone Plutonic Suite, Yukon Territory, Canada[J]. Mineralium Deposita, 36: 583-593.

      Mao J W, Ouyang H G, Song S W, Santosh M, Yuan S D, Zhou Z H, Zheng W, Liu H, Liu P, Cheng Y B and Chen M H. 2019. Geology and metallogeny of tungsten and tin deposits in China[J]. Econ. Geol., 22: 411-482.

      Mao J W, Yuan S D, Xie G Q, Song S W, Zhou Q, Gao Y B, Liu X, Fu X F, Cao J, Zeng Z L, Li G T and Fan X Y. 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st Century[J]. Mineral Deposits, 38(5): 935-969(in Chinese with English Abstract).

      Mao J W, Wu S H, Song S W, Dai P, Xie G Q, Su Q W, Liu P, Wang X G, Yu Z Z, Chen X Y and Tang W X. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model[J]. Chinese Science Bulletin, 65(33): 3746-3762(in Chinese).

      Mao J W, Zheng W, Xie G Q, Lehmann B and Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the Southeast China Coast: Geological characteristics and metallogenic implications[J]. Geology, 49(5): 592-596.

      Marsh E E, Goldfarb R J, Hart C J R and Johnson C A. 2003. Geology and geochemistry of the Clear Creek intrusion related gold occurrences, Tintina gold province, Yukon, Canada[J]. Canadian Journal of Earth Sciences, 40: 681-99.

      Mavrogenes J, Frost R and Sparks H A. 2013. Experimental evidence of sulfide melt evolution via immiscibility and fractional crystallization[J]. The Canadian Mineralogist, 51(6): 841-850.

      McCollom T M and Seewald J S. 2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments[J]. Chemical Reviews, 107(2): 382-401.

      McCollom T M, Lollar B S, Lcrampe-Couloume G and Seewald J S. 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 74(9): 2717-2740.

      McCoy D T. 2000. Mid-Cretaceous plutonic-related gold deposits of interior Alaska: Metallogenesis, characteristics, gold-associative mineralogy, and geochronology[D]. Fairbanks: University of Alaska. 245.

      McCoy D, Newberry R J, Layer P W, DiMarchi J J, Bakke A A, Masterman J S and Minehane D L. 1997. Plutonic-related gold depo-sits of interior Alaska[J]. Econ. Geol., 9: 191-241.

      McLeish D F, Williams-Jones A E, Vasyukova O V, Clark J R and Board W S. 2021. Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature[J]. Proceedings of the National Academy of Sciences, 118(20): e2100689118.

      Meinert L D. 1989. Gold skarn deposits-Geology and exploration criteria[J]. Econ. Geol., 6: 537-552.

      Meinert L D, Hefton K K, Mayes D and Tasiran I. 1997. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya[J]. Econ. Geol., 92: 509-534.

      Meinert L D. 1998a. A review of skarns that contain gold[A]. In: Lentz D R, eds. Mineralized Intrusion-related Skarn Systems[C]. Mine-ralogical Association of Canada Short Course Series, 26: 359-414.

      Meinert L D. 1998b. Application of skarn deposit zonation to mineral exploration[J]. Exploration and Mining Geology, 6(2): 185-208.

      Meinert L D. 2000. Gold in skarns related to epizonal intrusions[J]. Reviews in Economic Geology, 13: 347-375.

      Meinert L D, Dipple G M and Nicolescu S. 2005. World skarn deposits[J]. Economic Geology 100th Anniversary Volume: 299-336.

      Mercer C N. 2021. Eocene magma plumbing system beneath Cortez Hills carlin-type gold deposit, Nevada: is there a deep-seated pluton[J]? Econ. Geol., 116: 501-513.

      Métrich N, Berry A J, O’Neill H S C and Susini J. 2009. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 73(8): 2382-2399.

      Metz P A. 1991. Metallogeny of the Fairbanks district, Alaska and adjacent areas[R]. Mineral Institute Research Laboratory Report, 90: 237.

      Milford J C. 1984. Geology of the Apex Mountain Group, North and East of the Similkameen River, South-Central British Columbia[D].  The University of British Columbia.

      Mortensen J K, Hart C J R, Murphy D C, Heffernan S, Tucker T L and Smith M T. 2000. Temporal evolution of Early and Mid-Cretaceous magmatism in the Tintina gold belt[J]. British Columbia and Yukon Chamber of Mines, 2: 49-58.

      Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K and Donovan A. 2014. Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing[J]. Earth and Planetary Science Letters, 393: 200-209.

      Mueller A G and Groves D I. 1991. The classification of Western Australiau greenstone-hosted gold deposits according to wallrock-alteration mineral assemblages[J]. Ore Geology Reviews, 6: 291-331.

      Mueller A G. 1997. The Nevoria gold skarn deposit in Archean iron-formation, sSouthern Cross Greenstone belt, western Australia: I. tectonic setting, petrography, and classification[J]. Econ. Geol., 92: 181-209.

      Newberry R J. 1991. Scheelite-bearing skarns in the Sierra Nevada region, California. Contrasts in zoning and mineral compositions and tests of infiltration metasomatism theory[A]. In: Barto-Kyriakidis A, ed., Skarn-their genesis and metallogeny: Athens, Greece, Theophrastus Publications S.A[C]. 343-384.

      Newberry R J, McCoy D T and Brew D A. 1995a. Plutonic-hosted gold ores in Alaska: Igneous versus metamorphic origins[J]. Resource Geology, 18: 57-100.

      Newberry R J and Solie D N. 1995b. Data for plutonic rocks and associated gold deposits in interior Alaska[R]. Alaska Division of Geological and Geophysical Surveys Public-Data File 95-25, 62.

      Newberry R J, Allegro G L, Cutler S E, Hagen-Levelle J H, Adams D D, Nicholson L C, Weglarz T B, Bakke A A, Clautice K H, Coulter G A, Ford M J, Myers G L and Szumigala D J. 1997. Skarn deposits of Alaska[J]. Econ. Geol., 9: 355-395.

      Newberry R J. 1998. W & Sn skarn deposits: A 1998 status report[A]. In: Lentz D R, ed. Mineralized intrusion-related skarn systems[C]. Mineralogical Association of Canada Short Course Handbook, 26: 289-336.

      Nivin V A, Treloar P J, Konopleva N G and Ikorsky S V. 2005. A review of the occurrence, form and origin of C-bearing species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia[J]. Lithos, 85: 93-112.

      Okamoto H and Massalski T B. 1983. The Au-Bi (gold-bismuth) system[J]. Bulletin of Alloy Phase Diagrams, 4(4): 401-407.

      Palomba M and Carotenuto G. 2016. Precipitation of lamellar gold nanocrystals in molten polymers[R]. AIP Conference Proceedings, 1736(1): 020151.

      Parrish R R and Monger J W H. 1992. New U-Pb dates from southwestern British Columbia: In radiogenic age and isotope studies. Report 5[R]. Geological Survey of Canada, 91-2, 87-108.

      Phillips G N and Powell R. 2015. A practical classification of gold deposits, with a theoretical basis[J]. Ore Geology Reviews, 65: 568-573.

      Pinet N, Davis W J, Petts D C, Sack P, Mercier-Langevin P, Lavoie D and Jackson S E. 2022. U-Pb vein calcite dating reveal the age of carlin-type gold deposits of Central Yukon and a contemporaneity with a regional intrusion-related metallogenic event[J]. Econ. Geol., 117: 905-922.

      Pirajno F. 2008. Hydrothermal processes and mineral systems[M]. Berlin: Springer. 1-528.

      Potter J, Rankin A H and Treloar P J. 2004. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia[J]. Lithos, 75: 311-330.

      Qi J. 2021. Geochronology and geochemical characteristics of ore bea-ring porphyries in the North-Zegulang ore segment, Jiama[D]. Supervisor: Tang J X. Beijing: China University of Geosciences (Beijing). 1-61(in Chinese with English abstract).

      Qiu K F, Deng J, Laflamme C, Long Z Y, Wan R Q, Moynier F, Yu H C, Zhang J Y, Ding Z J and Goldfarb R. 2023. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J]. Geochimica et Cosmochimica Acta, 343: 133-141.

      Ray G E, Ettlinger A D and Meinert L D. 1990. Gold skarns: Their distribution, characristics and problems in classification[R]. British Columbia Geological Survey Geological Fieldwork, 237-246.

      Ray G E, Webster I C L, Dawson G L and Ettlinger A D. 1992. A geological overview of the Hedley gold skarn district southern British Golumbia[R]. Geological Fieldwork of British Columbia Geological Survey, Paper 1993-1: 269-279.

      Ray G E and Dawson G L. 1994. The geology and mineral deposits of the Hedley gold skarn district, southern British Columbia[J]. Mi-nistry of Energy, Mines and Petroleum Resources Bulletin, 87: 156.

      Redin T O, Redina A A, Prokopiev I R, Dultsev V F, Kirillov M V and Mokrushnikov V P. 2020. The Lukoganskoe Au-Cu skarn deposit (eastern Transbaikalia): Mineral composition, age, and formation conditions[J]. Russian Geology and Geophysics, 61: 174-195.

      Redwood S D and Rice C M. 1997. Petrogenesis of Miocene basic shoshonitic lavas in the Bolivian Andes and implications for hydrothermal gold, silver and tin deposits[J]. Journal of South American Earth Sciences, 10: 203-221.

      Roedder E R. 1984. Fluid inclusions[J]. Reviews in Mineralogy, 12: 644.

      Rowins S M. 2000. Reduced porphyry copper gold deposits: A new variation on an old Theme[J]. Geology, 28(6): 491-494.

      Rui Z Y, Zhao Y M, Wang L S and Wang Y T. 2003. Role of volatile components in formation of skarn and porphyry deposits[J]. Mineral Deposits, 22(1): 141-148(in Chinese with English Abstract).

      Santacruz R L, Redwood S D, Cecchi A, Matteini M, Botelho N F, Ceballos J, Starling T and Molano J C. 2021. The age and petrogenesis of reduced to weakly oxidized porphyry intrusions at the Marmato gold deposit, Colombia[J]. Ore Geology Reviews, 131: 103953.

      Saxena S K and Fei Y. 1988. Fluid mixture in the C-H-O system of high pressure and high temperature[J]. Geochimica et Cosmochimica Acta, 52: 505-512.

      Shen P, Pan H D, Xiao W J, Li X H, Dai H W and Zhu H P. 2013. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China[J]. International Geology Review, 55: 1991-2007.

      Shen P, Hattori K, Pan H D, Jackson S and Seitmuratova E. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt[J]. Econ. Geol., 110: 1861-1878.

      Shen P and Pan H D. 2020. Advances and its diagnostic criteria in the study of the reduced porphyry ore deposits in China[J]. Acta Petrologica Sinica, 36(4): 967-994(in Chinese with English Abstract).

      Sherwood Lollar B, Westgate T D, Ward J A, Slater G F and Lacrampe-Couloume G. 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs[J]. Nature, 416: 522-524.

      Shi K T, Ulrich T, Wang K Y, Ma X L, Li S D and Wang R. 2020. Hydrothermal evolution and ore genesis of the Laozuoshan Au skarn deposit, northeast China: Constrains from mineralogy, fluid inclusion, and O-C-S-Pb isotope geochemistry[J]. Ore Geology Reviews, doi.org/10.1016/j.oregeorev.2020.103879.

      Sillitoe R H. 1993. Epithermal models: Genetic types, geometrical controls and shallow features[J]. Geological Association of Canada Special Paper, 40: 403-417.

      Simmons S F, Brown K L and Tutolo B M. 2016. Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems: Spatial patterns, fluid-mineral equilibria, and implications for epithermal mineralization[J]. Econ. Geol., 111(3): 589-618.

      Smith C N. 2001. Geology of the South Redline Au skarn deposit, Humboldt County, Nevada[D]. Washington: Washington State University. 176.

      Smith C M, Canil D, Rowins S M and Friedman R. 2012. Reduced granitic magmas in an arc setting: The Catface porphyry Cu-Mo deposit of the Paleogene Cascade Arc[J]. Lithos, 154: 361-373

      Smithson D M. 2004. Late Eocene tectono-magmatic evolution and genesis of reduced porphyry copper-gold mineralization at the North Fork deposit, West Central Cascade Range, Washington[D]. USA: University of British Columbia. 1-100.

      Soloviev S G and Krivoshchekov N N. 2011. Vostok-2 gold-base metal-tungsten skarn deposit, Central Sikhote-Alin, Russia[J]. Geology of Ore Deposits, 53: 478-500.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2013. Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monoto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia[J]. Mineralium Deposita, 48: 603-627.

      Soloviev S G, Kryazhev S and Dvurechenskaya S. 2017a. Geology, mineralization, and fluid inclusion study of the Kuru-Tegerek Au-Cu-Mo skarn deposit in the Middle Tien Shan, Kyrgyzstan[J]. Mineralium Deposita, doi: 10.1007/s00126-017-0729-5.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2017b. Geology, mineralization, stable isotope, and fluid inclusion characteristics of the Vostok-2 reduced W-Cu skarn and Au-W-Bi-As stockwork deposit, Sikhote-Alin, Russia[J]. Ore Geology Reviews, 86: 338-365.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2017c. Geology, mineralization, and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (±Cu, Au, Bi) skarn deposit, Sikhote-Alin, Russia[J]. Ore Geology Reviews, doi: http://dx.doi.org/10.1016/j.oregeorev.2017.06.002.

      Soloviev S G and Kryazhev S G. 2018. Tungsten mineralization in the Tien Shan gold belt: Geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, western Uzbekistan[J]. Ore Geology Reviews, 101: 700-724.

      Soloviev S G, Kryazhev S G, Dvurechenskaya S S and Uyutov V I. 2019a. Geology, mineralization, fluid inclusion, and stable siotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia[J]. Ore Geology Reviews, 112: 103309.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2019b. Geology, mineralization, and fluid inclusion characteristics of the Meliksu reduced tungsten skarn deposit, Alai Tien Shan, Kyrgyzstan: Insights into conditions of formation and regional links to gold mineralization[J]. Ore Geology Reviews, 111: 103003.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2020. Geology, mineralization, and fluid inclusion characteristics of the Agylki reduced tungsten(W-Cu-Au-Bi) skarn deposit, Verkhoyansk fold- and -thrust belt, eastern Siberia: Tungsten deposit in a gold-dominant metallogenic Province[J]. Ore Geology Reviews, 120: 103452.

      Song S G, Su L, Niu Y, Lai Y and Zhang L F. 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge[J]. Geochimica et Cosmochimica Acta, 73: 1737-1754.

      Sugisaki R and Mimura K. 1994. Mantle hydrocarbons: Abiotic or biotic[J]? Geochimica et Cosmochimica Acta, 58(11): 2527-2542.

      Sui J X, Li J W, Wen G J and Xiao Y. 2016. The Dewulu Reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system[J]. Ore Geology Reviews, doi:10.1016/j.oregeorev.2016.09.018.

      Sun W D, Arculus R J, Kamenetsky V S and Binns R A. 2014. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 431: 975-97.

      Takagi T. 2004. Origin of magnetite- and ilmenite-series granitic rocks in the Japan Arc[J]. American Journal of Science, 304(2): 169-202.

      Theodore T G, Orris G J, Hammerstrom J M and Bliss J D. 1991. Gold-bearing skarns[R]. U.S.Geological Survey Bulletin, 1930.

      Thompson J F H, Sillitoe R H, Baker T, Lang J R and Mortensen J K. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces[J]. Mineralium Deposita, 34: 323-334.

      Thompson J F H and Newberry R J. 2000. Gold deposits related to reduced granitic intrusions[J]. Society of Economic Geologists, Reviews, 13: 377-400.

      Tomkins A G and Mavrogenes J A. 2002. Mobilization of gold as a polymetallic melt during pelite anatexis at the Challenger deposit, South Australia: A metamorphosed Archean gold deposit[J]. Econ. Geol., 97(6): 1249-1271.

      Tomkins A G, Pattison D R M and Frost B R. 2007. On the initiation of metamorphic sulfide anatexis[J]. Journal of Petrology, 48(3): 511-535.

      Tooth B, Brugger J, Ciobanu C and Liu W H. 2008 Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids[J]. Geology, 36(10): 815-818.

      Tooth B, Ciobanu C L, Green L, O’Neil B and Brugger J. 2011. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study[J]. Geochimica et Cosmochimica Acta, 75(19): 5423-5443.

      Tu W. 2014. Characteristics and genesis of the Chaoshan skarn gold deposit, Tongling, Anhui Province[D]. Supervisor: Du Y S. Beijing: China University of Geosciences (Beijing). 1-128(in Chinese with English Abstract).

      Ueno Y, Yamada K, Yoshida N, Maruyama S and Isozaki Y. 2006. Evidence from fluid inclusions for microbial methanogenesis in the Early Archaean era[J]. Nature, 440(7083): 516-519.

      Wang D Z, Liu J J, Zhai D G, Carranza E J M, Wang Y H, Zhen S M, Wang J, Wang J P, Liu Z J and Zhang F F. 2019. Mineral paragenesis and ore-forming processes of the Dongping gold deposit, Hebei Province, China[J]. Resource Geology, 69(3): 287-313.

      Wang H. 2016. Petrogenesis, metallogeny and tectonic settings of the Saishitang Cu deposit in Qinghai Province, China[D]. Supervisor: Feng C Y. Beijing: Chinese Academy of Geological Sciences. 1-168(in Chinese with English Abstract).

      Wang J, Xie G Q, Yao L, Zhu Q Q and Li W. 2014. Petrogenesis of granodiorite porphyry in Jilongshan skarn Au deposit of southeast Hubei Province: Geochemical and zircon U-Pb dating constraints[J]. Mineral Deposits, 33(1):137-152(in Chinese with English abstract).

      Wang Z C, Wang Y, Wang X, Cheng H and Xu Z. 2021. Metasomatized lithospheric mantle and gold mineralization[J]. Earth Science, 46(12): 4197-4229(in Chinese with English Abstract).

      Wang Z H. 2017. Geochemical, geochronology and oxygen fugacity characteristics of Xishan granite and constraint to the Tin mineralization in Yangchun basin, Guangdong, South China[D]. Supervisor: Shi Z M and Liang J L. Chengdu: Chengdu University of Technology, 1-67(in Chinese with English Abstract).

      Webster J D and Holloway J R. 1988. Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: New implications for granitic differentiation and ore deposition[J]. Geochimica and Cosmochimica Acta, 56: 2091-2105.

      Wei B, Wang C Y, Wang Z C, Cheng H, Xia X P and Tan W. 2021. Mantle-derived gold scavenged by bismuth-(tellurium)-rich melts: Evidence from the Mesozoic Wulong gold deposit in the North China Craton[J]. Ore Geology Reviews, 131: 104047.

      Wei S N and Zhu Y F. 2015. Petrology, geochronology and geochemistry of intermediate-acidic intrusions in Baogutu area, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 31(1):143-160(in Chinese with English Abstract).

      Wei S N, Zhu Y F, Jiang J Y and Feng W Y. 2019. Magmatic oxidation state of the Baogutu porphyry copper deposit in the West Junggar of China: Implication for ore-formation[J]. Ore Geology Reviews, 106: 351-368.

      Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 161(1): 291-314.

      Wu C. 2017. Tectonic setting and formation mechanism of reduced porphyry copper-molybdenum deposit, southern West Junggar[D]. Supervisor: Dong L H. Beijing: China University of Geosciences (Beijing). 1-229(in Chinese with English Abstract).

      Wulff K, Steven N M, Hein K A A and Kinnaird J A. 2017. The relationship between the structural orientation and the gold minera-lization of quartz-sulphide veins in the Navachab gold deposit, Namibia[J]. Ore Geology Reviews, 80: 504-521.

      Xie G Q, Li X H, Han Y X, Zhu Q Q, Li W, Ye H and Song S W. 2020. Recent progress in study of enrichment mechanism of tellurium, selenium and thallium from oxidized gold-rich porphyry-skarn deposits[J]. Mineral Deposits, 39(4): 559-567(in Chinese with English Abstract).

      Xie T W, Tang J X, Chen Y C and Lang X H. 2018. Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: Implications for petrogenesis and mineralization[J]. Ore Geology Reviews, 96: 98-114.

      Xu W G and Zhang D H. 2012. An interpretation of the role of reduced fluid in porphyry metallogenesis[J]. Acta Geologica Sinica, 86(3): 495-502(in Chinese with English Abstract).

      Xu X Y, Chen J L, Gao T, Li P and Li T. 2014. Granitoid magmatism and tectonic evolution in northern edge of the western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 30(2): 371-389(in Chinese with English Abstract).

      Xu Z W, Fang C Q, Lu X C, Song J X, Lu J J, Hua M, Huang S S, Nie G P and Zhu S P. 2004. Geological and Geochemical characteristics of rock mass related with gold mineralization in the Chaoshan deposit[J]. Geology and Prospecting, 40(3): 41-46(in Chinese with English abstract).

      Yang Z M and Cooke D R. 2019. Porphyry copper deposits in China[J]. Society of Economic Geologists Special Publication, 22: 133-187.

      Yuan S D, Williams-Jones A E, Mao J W, Zhao P L, Yan C and Zhang D L. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths[J]. Econ. Geol., 113(5): 1193-1208.

      Zajacz Z and Halter W. 2009. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and va‐por inclusions in a basaltic andesite from the Villarrica volcano(Chile)[J]. Earth and Planetary Science Letters, 282(1-4): 115-121.

      Zajacz Z, Candela P A, Piccoli P M, Sanchez-Valle C and Wälle M. 2013. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas[J]. Geochimica et Cosmochimica Acta, 112: 288-304.

      Zhai M G and Hu B. 2021. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Sciences and Environment, 43(1): 1-11(in Chinese with English Abstract).

      Zhang F, Zhang D Y, Weng W F, Wei D Z, Wang J, Jiang Z R, Hou S Y and Zhou T F. 2023. The genesis and Rb mineralization of the Changlingjian granite porphyry, eastern Jiangnan Orogenic Belt[J]. Acta Petrologica Sinica, 39(6): 1649-1673(in Chinese with English Abstract).

      Zhang J J, Mei Y P, Wang D H and Li H Q. 2008. Isochronology study on the Xianglushan scheelite deposit in north Jiangxi Province and its geological significance[J]. Acta Geologica Sinica, 82(7): 927-931(in Chinese with English Abstract).

      Zhang R Q, Lu J J, Wang R C, Yao Y, Ding T, Hu J B and Zhang H F. 2016. Petrogenesis of W- and Sn-bearing granites and the mechanism of their metallogenic diversity in the Wangxianling area, southern Hunan Province[J]. Geochimica, 45(2): 105-132(in Chinese with English Abstract).

      Zhang W. 2017. A study on petrology, evolution of the ore-forming fluid and the genesis of the Seleteguole reduced porphyry-skarn Cu-Mo deposit, Western Tianshan, Xinjiang[D]. Supervisor: Su W C and Zhang X C. Beijing: University of Chinese Academy of Sciences. 1-141(in Chinese with English Abstract).

      Zhao B, Zhang D H, Shi C L and Zhang R Z. 2014. Rethinking of the metallogenic specialization and ore-bearing potential of redox-related granitoid[J]. Acta Petrologica et Mineralogica, 33(5): 955-964(in Chinese with English Abstract).

      Zhao C T. 2021. Mineralization, metallogenic model and geodynamic setting of skarn type Au-Fe-Cu polymetallic deposits in the central of Heilongjiang Province[D]. Supervisor: Su J G. Changchun: Jilin University. 1-224(in Chinese with English Abstract).

      Zhao H J, Mao J W, Xiang J F, Zhou Z H, Wei K T and Ke Y F. 2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province[J]. Acta Petrologica Sinica, 26(3): 768-784(in Chinese with English abstract).

      Zhao W and Zhang H J. 2022. Geochemical characteristics of skarn minerals and causative granites of the Xianglushan tungsten skarn deposit, Jiangxi, South China[J]. Acta Petrologica Sinica, 38(2): 483-494(in Chinese with English Abstract).

      Zhao Y M, Lin W W, Bi C S, Li D X and Jiang C J. 2012. Skarn depo-sits in China[M]. Beijing: Geological Publishing House. 1-411(in Chinese).

      Zhao Y M, Feng C Y and Li D X. 2017. New progress in prospecting for skarn deposits and spatial-teporal distribution of skarn depo-sits in China[J]. Mineral Deposits, 36(3): 519-543(in Chinese with English Abstract).

      Zhao Y M, Feng C Y, Qu H Y, Li D X, Liu J N and Wu Q. 2023. Major skarn deposits in the world[M]. Beijing: Geological Publishing House. 1-359(in Chinese).

      Zheng J H and Guo C L. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance[J]. Acta Petrologica Sinica, 28(1): 75-90(in Chinese with English Abstract).

      Zheng W B, Tang J X, Zhong K H, Ying L J, Leng Q F, Ding S and Lin B. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa region, China[J]. Ore Geology Reviews, 74: 151-169.

      Zhou T F, Fan Y, Wang S W and White N C. 2017. Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley Metallogenic Belt[J]. Acta Petrologica Sinica, 33(11): 3353-3372(in Chinese with English Abstract).

      Zhu B, Zhang H F, Shen P, Su B X, Xiao Y and He Y S. 2018. Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt[J]. Ore Geology Reviews, 101: 803-818.

      附中文参考文献

      蔡明海,张文兵,彭振安,刘虎,郭腾飞,谭泽模,唐龙飞. 2016.湘南荷花坪锡多金属矿床成矿年代研究[J].岩石学报,32(7):2111-2123

      曹锡章,宋天佑,王杏乔. 1994.无机化学(第3版)[M].北京:高等教育出版社. 495-508.

      陈甲斌,余良晖. 2020.中美欧矿产资源形势对比分析[M].北京:地质出版社. 1-173.

      陈衍景,陈华勇,Zaw K,Pranco P,张增杰. 2004.中国陆区大规模成矿的地球动力学:以夕卡岩型金矿为例[J].地学前缘,11(1):57-83.

      陈衍景,倪培,范宏瑞,Pirajno F,赖勇,苏文超,张辉. 2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,23(9):2085-2108.

      陈毓川,王登红,朱裕生,徐志刚,王世称,翟裕生,汤中立,裴荣富,沈保丰,肖克炎. 2007.中国成矿体系与区域成矿评价[M].北京:地质出版社. 1-1005.

      樊献科,张智宇,侯增谦,潘小菲,张翔,盛俞策,戴佳良,吴显愿.2020.江西大湖塘钨矿田平苗矿区含矿花岗岩矿物学特征及对成矿的指示意义[J].岩石学报,36(12):3757-3782.

      范宏瑞,蓝庭广,李兴辉,Santosh M,杨奎锋,胡芳芳,冯凯,胡换龙,彭红卫,张永文. 2021.胶东金成矿系统的末端效应[J].中国科学:地球科学,51(9):1504-1523.

      龚雪婧,杨竹森,赵晓燕,张雄,官玮琦. 2018.西藏纳如松多铅锌矿区晚白垩世石英闪长岩形成机制及其地质意义:岩浆锆石证据[J].矿床地质,37(1):91-104.

      李昌昊,申萍,潘鸿迪,曹冲. 2017.新疆西准噶尔成矿流体中还原性气体形成机理[J].地球科学与环境学报,39(3):386-396.

      李建威,隋吉祥,靳晓野,文广,昌佳,朱锐,詹涵钰,武文辉. 2019.西秦岭夏河-合作地区与还原性侵入岩有关的金成矿系统及其动力学背景和勘查意义[J].地学前缘,26(5):17-32.

      李延河,段超,曾普胜,简伟,万秋,胡古月,赵晓燕,武晓珮. 2020.还原性含碳质围岩在斑岩铜矿成矿中的作用[J].地球学报,41(5):637-650.

      刘家军,王大钊,翟德高,夏清,郑波,高燊,钟日晨,赵胜金. 2021.低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志[J].岩石学报,37(9):2629-2656.

      刘星成,许婷,熊小林,李立,李建威. 2021.岩浆熔/流体中金的溶解度:高温高压实验研究进展[J].中国科学:地球科学,51(9):1477-1488.

      路英川,刘家军,张栋,王大钊,孙昊,王斌,张文华,康建坤. 2017.西秦岭双朋西矽卡岩型金铜矿床花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J].岩石学报,33(2): 545-564.

      马瑞,黄明亮,胥磊落,毕献武,刘龚. 2020.扬子克拉通西缘新生代幔源钾质-超钾质岩岩浆氧逸度及其对陆内斑岩成矿作用的启示[J].矿物岩石地球化学通报,39(4):794-809.

      毛景文,袁顺达,谢桂青,宋世伟,周琦,高永宝,刘翔,付小方,曹晶,曾载淋,李通国,樊锡银. 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J].矿床地质,38(5):935-969.

      毛景文,吴胜华,宋世伟,戴盼,谢桂青,苏蔷薇,刘鹏,王先广,余忠珍,陈祥云,唐维新. 2020.江南世界级钨矿带:地质特征、成矿规律和矿床模型[J].科学通报,65(33):3746-3762.

      祁婧.2021.西藏甲玛矿床则古朗北矿段含矿斑岩年代学及地球化学特征[D].导师:唐菊兴.北京:中国地质大学(北京). 1-61.

      芮宗瑶,赵一鸣,王龙生,王义天. 2003.挥发份在夕卡岩型和斑岩型矿床形成中的作用[J].矿床地质,22(1):141-148.

      申萍,潘鸿迪. 2020.中国还原性斑岩矿床研究进展及判别标志[J].岩石学报,36(4):967-994.

      涂伟. 2014.安徽铜陵朝山矽卡岩型金矿的特征和成因[D].导师:杜杨松.北京:中国地质大学(北京).1-128.

      汪在聪,王焰,汪翔,程怀,徐喆. 2021.交代岩石圈地幔与金成矿作用[J].地球科学,46(12):4197-4229.

      汪祖豪. 2017.广东阳春盆地锡山岩体岩石地球化学、年代学和氧逸度特征及其对锡成矿作用的制约[D].导师:施泽明,梁金龙.成都:成都理工大学.1-67.

      王辉. 2016.青海赛什塘铜矿成岩成矿作用与构造背景[D].导师:丰成友.北京:中国地质科学院,1-168.

      王建,谢桂青,姚磊,朱乔乔,李伟. 2014.鄂东南鸡笼山矽卡岩型金矿床花岗闪长斑岩的成因:地球化学和锆石U-Pb年代学约束[J].矿床地质,33(1):137-152.

      魏少妮,朱永峰. 2015.新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J].岩石学报,31(1):143-160.

      吴楚. 2017.西准南部还原性斑岩铜钼矿构造背景与形成机制[D].导师:董连慧.北京:中国地质大学(北京).1-229.

      谢桂青,李新昊,韩颖霄,朱乔乔,李伟,叶晖,宋世伟. 2020.氧化性富金斑岩-矽卡岩矿床中碲、硒、铊富集机制的研究进展[J].矿床地质,39(4):559-567.

      徐文刚,张德会. 2012.还原性流体与斑岩型矿床成矿机制探讨[J].地质学报,86(3):495-502.

      徐学义,陈隽璐,高婷,李平,李婷. 2014.西秦岭北缘花岗质岩浆作用及构造演化[J].岩石学报,30(2):371-389.

      徐兆文,方长泉,陆现彩,宋敬祥,陆建军,华明,黄顺生,聂桂平,朱士鹏. 2004.与朝山金矿有关岩体地质地球化学特征[J].地质与勘探,40(3):41-46.

      翟明国,胡波. 2021.矿产资源国家安全、国际争夺与国家战略之思考[J].地球科学与环境学报,43(1):1-11.

      张飞,张达玉,翁望飞,韦导忠,王静,姜重任,侯舒雅,周涛发.2023.江南造山带东段长岭尖花岗斑岩的形成年代、岩石成因及Rb成矿指示[J].岩石学报,39(6):1649-1673.

      张家菁,梅玉萍,王登红,李华芹. 2008.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报,82(7):927-931.

      张伟. 2017.新疆西天山色勒特果勒还原性斑岩-矽卡岩型铜钼矿床岩石学、成矿流体演化及矿床成因研究[D].导师:苏文超,张兴春.北京:中国科学院大学. 1-141.

      章荣清,陆建军,王汝成,姚远,丁腾,胡加斌,张怀峰. 2016.湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制[J].地球化学,45(2):105-132.

      赵博,张德会,石成龙,张荣臻. 2014.对与氧逸度有关的花岗岩类成矿专属性-含矿性问题的再思考[J].岩石矿物学杂志,33(5):955-964.

      赵春涛. 2021.黑龙江中部矽卡岩型金、铁铜多金属矿床成矿作用、成矿模式及地球动力学背景[D].导师:孙景贵.长春:吉林大学. 1-224.

      赵海杰,毛景文,向君峰,周振华,魏克涛,柯于富. 2010.湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征[J].岩石学报,26(3):768-784.

      赵文,张怀瑾. 2022.江西香炉山钨矿床矽卡岩矿物和成矿花岗岩地球化学特征及其指示意义[J].岩石学报,38(2):483-494.

      赵一鸣,林文蔚,毕承思,李大新,蒋崇俊. 2012.中国矽卡岩矿床[M].北京:地质出版社.1-411.

      赵一鸣,丰成友,李大新. 2017.中国矽卡岩矿床找矿新进展和时空分布规律[J].矿床地质,36(3):519-543.

      赵一鸣,丰成友,瞿泓滢,李大新,刘建楠,吴琼. 2023.世界主要矽卡岩矿床[M].北京:地质出版社. 1-359.

      郑佳浩,郭春丽. 2012.湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义[J].岩石学报,28(1):75-90.

      周涛发,范裕,王世伟,White N C. 2017.长江中下游成矿带成矿规律和成矿模式[J].岩石学报,33(11):3353-3372.


  • 参考文献

      Abrajano T A, Sturchio N C, Bohlke J K, Lyon G L, Poreda R J and Stevens C M. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin[J]? Chemical Geology, 71(1-3): 211-222.

      Acosta-Góngora P, Gleeson S A, Samson I M, Ootes L and Corriveau L. 2015. Gold refining by bismuth melts in the iron-dominated NICO Au-Co-Ni (±Cu±W) deposit, NWT, Canada[J]. Econ.Geol., 110(2): 291-314.

      Ague J J and Brimhall G H. 1987. Granites of the batholiths of California: Products of local assimilation and regional-scale crustal contamination[J]. Geology, 15(1): 63-66.

      Ague J J and Brimhall G H. 1988. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory mi-nerals in the batholiths of California[J]. Geological Society of America Bulletin, 100(6): 891-911.

      Anderson R G. 1988. An overview of some Mesozoic and Tertiary plutonic suites and their associated mineralization in the northern Canadian Cordillera[J]. Canadian Institute of Mining and Metallurgy, 39: 96-113.

      Baker T and Lang J R. 1999. Geochemistry of hydrothermal fluids associated with intrusion-hosted gold mineralization, Yukon Territory[A]. In: Stanley C J, eds. Mineral deposits: Processes to processing[C]. Proceedings of the 5th Biennial Society for Geology Applied to Mineral Deposits Meeting and the 10th Quadrennial IAGOD Symposium, London, August 22-25, 17-20.

      Baker T and Lang J R. 2001, Fluid inclusion characteristics of intrusion related gold mineralization, tombstone-tungsten magmatic belt, Yukon Territory, Canada[J]. Mineralium Deposita, 36: 563-582.

      Bakke A A. 1995. Porphyry deposits of the northwestern Cordillera[J]. Canadian Institute of Mining, Metallurgy, and Petroleum, 46: 795-802.

      Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle[J]. Contributions to Mineralogy and Petrology, 114(3): 331-348.

      Beeskow B, Treloar P J, Rankin A H, Vennemann T W and Spangenberg J. 2006. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia[J]. Lithos, 91: 1-18.

      Bell A S and Simon A. 2011. Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine bearing aqueous volatiles[J]. Geology, 39(5): 499-502.

      Berndt M E, Allen D E and Seyfried W E. 1996. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bar[J]. Geology, 24(4): 351-354.

      Betsi T B, Lentz D R and Mcfarlane C. 2016. The nucleus deposit: Superposed Au-Ag-Bi-Cu mineralization systems at Freegold Mountain, Yucon, Canada[J]. Resource Geology, 66: 419-454.

      BGMHB (Bureau of Geology and Mineral Resources of the Hebei Province). 1989. Regional geology of Hebei Province[M]. Beijing: Geological Publishing House. 748(in Chinese).

      Biagioni C, D’Orazio M, Vezzoni S, Dini A and Orlandi P. 2013. Mobilization of Tl-Hg-As-Sb-(Ag, Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy)[J]. Geo-logy, 41(7): 747-750.

      Billingsley P and Hnme C B. 1941. The ore deposits of Nickel Plate Mountain, Hedley, B.C[J]. Canadian Institute of Mining and Me-tallurgy Bulletin, 44: 524-590.

      Brounce M, Stolper E and Eiler J. 2017. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(34): 8997-9002.

      Burisch M, Bussey S D, Landon N, Nasi C, Kakarieka A, Gerdes A, Albert R, Stein H J, Gabites J A, Friedman R M and Meinert L D. 2023. Timing of magmatism and skarn formation at the Limon, Guajes, and Media Luna gold±copper skarn deposits at Morelos, Guerrero State, Mexico[J]. Econ. Geol., 118: 695-718.

      Burnham C W. 1979. Magma and hydrothermal fluids[R]. In: Barnes H L. ed., Geochemistry of hydrothermal ore deposits, second edition[M]. New York: Wiley, 71-136.

      Cabri L J. 2002. The geology, geochemistry, mineralogy and mineral beneficiation of the platinum group elements[M]. Canadian Institute of Mining, Metallurgy and Petroleum, 13-129.

      Cai M H, Zhang W B, Peng Z A, Liu H, Guo T F, Tan Z M and Tang L F. 2016. Study on minerogenetic epoch of the Hehuaping tin-polymetallic deposit in southern Hunan[J]. Acta Petrologica Sinica, 32(7): 2111-2123(in Chinese with English abstract).

      Cámera M M M, Dahlquist J A, Garcia-Arias M, Moreno J A, Galindo C, Basei M A S and Molina J F. 2020. Petrogenesis of the F-rich peraluminous A-type granites: An example from the Devonian Achala batholith (Characato Suite), Sierras Pampeanas, Argentina[J]. Lithos, 378- 379: 105792.

      Cao M J, Li G M, Qin K Z, Jin L Y, Evans N J and Yang X R. 2014a. Baogutu: An example of reduced porphyry Cu deposit in western Junggar[J]. Ore Geology Reviews, 56: 159-180.

      Cao M J, Qin K Z, Li G M, Evans N J and Jin L Y. 2014b. Abiogenic Fischer-Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China[J]. Geochimica et Cosmochimica Acta, 141: 179-198.

      Cao M J, Qin K Z, Li G M, Evans N J and Jin L Y. 2015. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, western Junggar, NW China[J]. Ore Geology Reviews, 65: 940-954.

      Cao M J, Qin K Z, Li G M, Evans N J, Hollings P and Jin L Y. 2016. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China[J]. Lithos, 246-247: 13-30.

      Cao X Z, Song T Y and Wang X Q. 1994. Inorganic chemistry. 3rd Edition[M]. Beijing: Higher Education Press. 495-508(in Chinese).

      Cepedal A, Fuertes-Fuente M, Martín-Izard A, González-Nistal S and Rodríguez-Pevida L. 2006. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: Genetic implications in Cu-Au and Au skarns[J]. Mineralogy and Petrology, 87(3): 277-304.

      Chang Z S, Shu Q H, Meinert L D. 2019. Skarn deposits of China[J]. Econ. Geol., 22: 189-234.

      Chappell B W and White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173-174.

      Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P and Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′ N, MAR)[J]. Chemical Geology, 191: 345-359.

      Chen J B and Yu L H. 2020. Comparative analysis of mineral resources situation between China, America and Europe[M]. Beijing: Geological Publishing House. 1-173(in Chinese).

      Chen Y C, Wang D H, Zhu Y S, Xu Z G, Wang S C, Zai Y S, Tang Z L, Pei R F, Shen B F and Xiao K Y. 2007. Metallogenic system and regional metallogenic evaluation in China[M]. Beijing: Geological Publishing House. 1-1005(in Chinese).

      Chen Y J, Chen H Y, Zaw K, Pirajno F and Zhang Z J. 2004. The geodynamic setting of large-scale metallogenesis in China, exemplified by skarn type gold deposits[J]. Earth Science Frontiers, 11(1): 57-83(in Chinese with English abstract).

      Chen Y J, Chen H Y, Zaw K, Pirajno F and Zhang Z J. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview[J]. Ore Geology Reviews, 31: 139-169.

      Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C and Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrologica Sinica, 23(9): 2085-2108(in Chinese with English abstract).

      Christopher D H, John D A, Leonardson R W, Mclntosh W C, Heizler M T, Colgan J P and Watts K E. 2023. Timing of rhyolite intrusion and carlin type gold mineralization at the Cortez Hills carlin type deposit, Nevada, USA[J]. Econ. Geol., 118: 57-91.

      Ciobanu C L, Cook N J and Spry P G. 2006. Preface: Special Issue: Telluride and selenide minerals in gold deposits: How and why[J]? Mineralogy and Petrology, 87(3): 163-169.

      Ciobanu C L, Birch W D, Cook N J, Pring A and Grundler P V. 2010. Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, Central Victorian gold province, Australia[J]. Lithos, 116(1-2): 1-17.

      Cline J. 2004. Introduction to Carlin-type deposits[J]. Society of Economic Geologists Newsletter, 59:11-12.

      Cline J S, Hofstra A H, Mnntean J L, Tosdal R M and Hickey K A. 2005. Carlin-type gold deposits in Nevada: Critical geologic cha-racteristics and viable models[J]. Economic Geology 100th Anniversary Volume: 451-484.

      Cockerton A B D and Tomkins A G. 2012. Insights into the liquid bismuth collector model through analysis of the Bi-Au Stormont skarn prospect, Northwest Tasmania[J]. Econ. Geol., 107(4): 667-682.

      Cole A, Wilkinson J J, Halls C and Serenko T J. 1999. Geological cha-racteristics, tectonic setting and preliminary interpretations of the Jilau gold-quartz vein deposit, Tajikistan[J]. Mineralium Deposita, 35: 600-618.

      Cole A, Wilkinson J J, Halls C and Serenko T J. 2000. Geological cha-racteristics, tectonic setting, and preliminary interpretations of the Jilau gold-quartz vein deposit, Tajikistan[J]. Mineralium Deposita, 35: 600-618.

      Cullen I, Jones M and Baxter J L. 1990. Nevoria gold deposits[A]. In Hughes F E, ed., Geology of the mineral deposits of Australia and Papua New Guinea[C]. Melbourne: Australian Institute of Mining and Metallurgy. 301-305.

      Dall'Agnol R and de Oliveira D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 93 (3-4): 215-233.

      de la Garza V, Téllez R and Hernández A. 1996. Geology of the Bermejal iron-gold deposit, Mezcala, Guerrero, Mexico[A]. In: Coyner A H and Fahey P L eds., Geology and ore deposits of the American Cordillera, Reno/Sparks[C]. Nevada:Geological Society of Nevada, 3: 1355-1368.

      Deady E, Moon C, Moore K, Goodenough K M and Shail R K. 2022. Bismuth: Economic Geology and value chains[J]. Ore Geology Reviews, 143: 104722.

      Deng J, Wang Q F, Li G J, Hou Z Q, Jiang C Z and Leonid D. 2015. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 70: 457-485.

      Des Marais D J, Stallard M L, Nehring N L and Truesdell A H. 1988. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico[J]. Chemical Geology, 71: 159-167.

      Dias A S, Mills R A, Ribeiro da Costa I, Costa R, Taylor R N, Cooper M J and Barriga F J A S. 2010. Tracing fluid rock reaction and hydrothermal circulation at the Saldanha hydrothermal field[J]. Chemical Geology, 273: 168-179.

      Douglas N, Mavrogenes J, Hack A and England R. 2000. The liquid bismuth collector model: An alternative gold deposition mechanism[R]. 135.

      Duncan R A. 1999. Physical and chemical zonation in the Emerald lake pluton, Yukon Territory. Unpublished M.Sc[R]. University of British Columbia, 178.

      Dziggel A, Wulff K, Kolb J and Meyer F M. 2010. Processes of high-Tfluid-rock interaction during gold mineralization in carbonate-bearing metasediments: The Navachab gold deposit, Namibia[J]. Mineralium Deposita, 44: 665-687.

      Einaudi M T, Meinert L D and Newberry R J. 1981. Skarn deposits[J]. Econ. Geol., 75th Anniversary Volume: 317-391.

      Ettlinger A D and Meinert L D. 1991. Copper-gold skarn mineralization at the Veselyi mine, Sininkhinskoe district, Siberia, USSR[J]. Econ. Geol., 86: 185-194.

      Ettlinger A D, Meinert L D and Ray G E. 1992. Gold skarn mineralization and fluid evolution in the Nickel Plate deposit, Hedley district, British Columbia[J]. Econ. Geol., 87: 1541-1565.

      Fan H R, Groves D I, Mikucki E J and McNaughton N J. 2000. Contrasting fluid types at the Nevoria gold deposit in the southern Cross greenstone belt, western Australia: Implications of Aurife-rous fluids depositing ores within an Archean banded iron-formation[J]. Econ. Geol., 95: 1527-1536.

      Fan H R, Lan T G, Li X H, Santosh M, Yang K F, Hu F F, Feng K, Hu H L, Peng H W and Zhang Y W. 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong Province, eastern China[J]. Scientia Sinica (Terrae), 51(9):1504-1523(in Chinese).

      Fan X K, Zhang Z Y, Hou Z Q, Pan X F, Zhang X, Sheng Y C, Dai J L and Wu X Y. 2020. Mineralogical characteristics and its metallogenic implications of ore-bearing granites in the Pingmiao W-Cu deposit, Dahutang tungsten ore field, South China[J]. Acta Petrologica Sinica, 36(12): 3757-3782(in Chinese with English abstract).

      Feng H X, Shen P, Zhu R X, Tomkins A G, Brugger J, Ma G, Li C H and Wu Y. 2023. Bi/Te control on gold mineralizing processes in the North China Craton: Insights from the Wulong gold deposit[J]. Mineralium Deposita, 58: 263-286.

      Fiebig J, Woodland A B, Alessandro W D and Püttmann W. 2009. Excess methane in continental hydrothermal emissions is abiogenic[J]. Geology, 37(6): 495-498.

      Fuertes-Fuente M, Martin-Izard A, Garcia Nieto j, Maldonado C and Varela A. 2000. Preliminary mineralogical and petrological study of the Ortosa Au-Bi-Te ore deposit: A reduced gold skarn in the northern part of the Rio Narcea gold belt, Asturias, Spain[J]. Journal of Geochemical Exploration, 71: 177-190.

      Gammons C H, Yu Y and Williams-Jones A E. 1997. The disproportionation of gold chloride complexes at 25 to 200℃[J]. Geochimica et Cosmochimica Acta, 61: 1971-1983.

      Gaspar, M, Knaack C, Meinert L D and Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 72: 185-205.

      Geusebroek P A and Duke N A. 2004. An update on the geology of the Lupin gold mine, Nunavut, Canada[J]. Exploration and Mining Geology, 13: 1-13.

      Goldfarb R J, Miller L D, Leach D L and Snee L W. 1997. Gold depo-sits in metamorphic rocks of Alaska[J]. Economic Geology Monograph, 9: 151-190.

      Goldfarb R, Hart C, Miller M, Miller L, Farmer G L and Groves D. 2000. The Tintina gold belt: A global perspective[J]. British Columbia and Yukon Chamber of Mines, Special Volume, 2: 5-34.

      Goldfarb R J, Bake T, Dubé B, Groves D I, Hart C J R and Gosselin P. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes[J]. Economic Geology, 100th Anniversary Volume: 407-450.

      Goldfarb R J and Pitcairn L. 2023. Orogenic gold: is a genetic association with magmatism realistic[J]? Mineralium Deposita, 58: 5-35.

      Gong X J, Yang Z S, Zhao X Y, Zhang X and Guan W Q. 2018. Formation mechanism of Late Cretaceous intrusive rocks in Narusongduo Pb-Zn deposit, Tibet: Evidence from magmatic zircon[J]. Mineral Deposits, 37(1): 91-104(in Chinese with English abstract).

      Gordey S P and Anderson R G. 1993. Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories[R]. Geological Survey of Canada, Memoir, 248: 214.

      Grocke S B, Cottrell E, de Silva S and Kelley K A. 2016. The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas[J]. Earth and Planetary Science Letters, 440: 92-104.

      Groves D I, Santosh M, Goldfarb R J and Zhang L. 2018. Structural geometry of orogenic gold deposits: implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 9: 1163-1177.

      Grundler P V, Brugger J, Etschmann B E, Helm L, Liu W H, Spry P G, Tian Y, Testemale D and Pring A. 2013. Speciation of aqueous tellurium (IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition[J]. Geochimica et Cosmochimica Acta, 120: 298-325.

      Hale M. 1981. Pathfinder applications of arsenic, antimony and bismuth in geochemical exploration[M]. Developments in Economic Geology Elsevier, 307-323.

      Hart C J R, Baker T and Burke M. 2000. New exploration concepts for country-rock hosted, intrusion-related gold systems, Tintina gold Belt[J]. British Columbia and Yukon Chamber of Mines, 2: 145-172.

      Hart C J R. 2004. Mid-Cretaceous magmatic evolution and intrusion-related metallogeny of the Tintina gold province, Yukon and Alaska[D]. University of Western Australia.1-198.

      Hart C J R, Goldfarb R J, Lewis L L and Mair J L. 2004. The Northern Cordillera Mid-Cretaceous Plutonic Province: Ilmenite/magnetite-series granitoids and intrusion-related mineralization[J]. Resource Geology, 54: 253-280.

      Hart C J R, Mair J L, Goldfarb R J and Groves D I. 2005. Source and redox controls of intrusion-related metallogeny, Tombstone-Tungsten Belt, Yukon, Canada[R]. Transactions of the Royal Society of Edinburgh: Earth Science, 95: 339-356.

      Hart C J R. 2007. Reduced intrusion-related gold systems[A]. In: Goodfellow W D. ed., Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological Provinces, and exploration methods[C]. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 95-112.

      Harwood L M, Moody C J and Percy J M. 1989. Experimental organic chemistry: Principles and practice. 2nd Edition[M]. Oxford: Blackwell Scientific Publications. 1-778.

      He W Y, Mo X X, He Z H, White N C, Chen J B, Yang K H and Wang R. 2015. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, Southwest China[J]. Econ. Geol., 110: 1625-1641.

      Henry C D and Boden D R. 1998. Eocene magmatism: The heat source for Carlin-type gold deposits of northern Nevada[J]. Geology, 26: 1067-1070.

      Henry C D, John D A, Leonardson R W, McIntosh W C, Heizler M T, Colgan J P and Watts K E. 2023. Timing of rhyolite intrusion and carlin-type gold mineralization at the Cortez Hills carlin-type deposit, Nevada, USA[J]. Econ. Geol., 118: 57-91.

      Holloway J R. 2004. Redox reactions in seafloor basalts: Possible insights into silicic hydrothermal systems[J]. Chemical Geology, 210(1-4): 225-230.

      Holwell D A and McDonald I. 2010. A review of the behavior of platinum group elements within natural magmatic sulfide ore systems[J]. Platinum Metals Review, 54(1): 26-36.

      Holwell D A, Fiorentini M, McDonald I, Lu Y J, Giuliani A, Smith D J, Keith M and Locmelis M. 2019. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism[J]. Nature Communications, 10: 3511.

      Ishihara S. 1981. The granitoid series and mineralization[J]. Economic Geology 75th Anniversary Volume: 458-484.

      Jones B K. 1992. Application of metal zoning to gold exploration in porphyry copper systems[J]. Journal of Geochemical Exploration, 43: 127-155.

      Kelley K A and Cottrell E. 2012. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma[J]. Earth and Planetary Science Letters, 329-330: 109-121.

      Kenney J F, Kutcherov V A, Bendeliani N A and Alekseev V A. 2002. The evolution of multicomponent systems at high pressures:Ⅵ. The thermodynamic stability of the hydrogen-carbon system: The genesis of hydrocarbons and the origin of petroleum[J]. Proceedings of the National Academy of Sciences of the United States of America, 99(17): 10976-10981.

      Kim E J, Park M E and White N C. 2012. Skarn gold mineralization at the Geodo Mine, South Korea[J]. Econ. Geol., 107(3): 537-551.

      Kolb J, Dziggel A and Bagas L. 2015. Hypozonal lode gold deposits: A genetic concept based on a review of the New Consort, Renco, Hutti, Hira Buddini, Navachab, Nevoria and The granites depo-sits[J]. Precambrian Research, 262: 20-44.

      Konnerup-Madsen J. 2001. A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland[J]. Geology of Greenland Survey Bulletin, 190: 159-166.

      Lang J R. Baker T, Hart C J R and Mortensen J K. 2000. An exploration model for intrusion-related gold systems[J]. Society of Econ. Geol. 40: 6-15.

      Lang J R. 2001. Regional and system-scale controls on the formation of copper and or gold magmatic-hydrothermal mineralization[J]. University of British Columbia Mineral Deposit Research Unit,  2: 115.

      Lawrence D M, Allibone A H, Chang Z, Meffre S, Lambert-Smith J S and Treloar P J. 2017. The Tongon Au deposit, Northern Côte d’Ivoire: An example of Paleoproterozoic Au skarn mineralization[J]. Econ. Geol., 112: 1571-1593.

      Li C H, Shen P, Pan H D and Cao C. 2017. Forming mechanism of the reducing gas from mineralization fluid in West Junggar of Xinjiang, China[J]. Journal of Earth Sciences and Environment, 39(3): 386-396(in Chinese with English abstract).

      Li J W, Sui J X, Jin X Y, Wen G, Chang J, Zhu R, Zhan H Y and Wu W H. 2019. The intrusion-related gold deposits in the Xiahe-Hezuo district, West Qinling Orogen: Geodynamic setting and exploration potential[J]. Earth Science Frontiers, 26(5): 17-32(in Chinese with English abstract).

      Li Y and Audétat A. 2013. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation[J]. Geochimica et Cosmochimica Acta, 118: 247-262.

      Li Y and Audétat A. 2015. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochimica et Cosmochimica Acta, 162: 25-45.

      Li Y H, Duan C, Zeng P S, Jian W, Wan Q, Hu G Y, Zhao X Y and Wu X P. 2020. The role of reductive carbonaceous strata in the formation of porphyry copper ores[J]. Acta Geoscientia Sinica, 41(5): 637-650(in Chinese with English Abstract).

      Liu J, Mao J W, Lai C K, Wang X T, He J C and Xie H J. 2022. Contrasting geochemical signatures between fertile and barren granites and multi-isotope (Sr-Nd-Pb-S-He) study in the Lamasu-Saibo deposit, NW China: Implications for petrogenesis and ore genesis[J]. Ore Geology Reviews, 149:105114.

      Lin J C, Sharma R C and Chang Y A. 1996. The Bi-S (bismuth-sulfur) system[J]. Journal of Phase Equilibria, 17(2): 132-139.

      Liu J J, Wang D Z, Zhai D G, Xia Q, Zheng B, Gao S, Zhong R C and Zhao S J. 2021. Super-enrichment mechanisms of precious metals by low-melting point copper-philic element (LMCE) melts[J]. Acta Petrologica Sinica, 37(9): 2629-2656(in Chinese with English Abstract).

      Liu W and Pan X F. 2006. Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion: The mantle dynamics underneath the Palaeo-Asian Ocean through to the post-collisional period[J]. Earth and Planetary Science Letters, 242(3-4): 286-301.

      Liu X C, Xu T, Xiong X L, Li L and Li J W. 2021. Gold solubility in silicate melts and fluids: Advances from high-pressure and high-temperature experiments[J]. Science China Earth Sciences, 64(9): 1481-1491(in Chinese).

      Long K, Ludington S, du Bray E, André-Ramos O and McKee E H. 1992. Geology and mineral deposits of the La Joya district, Bolivia[J]. Society of Economic Geologists Newsletter, 10: 13-16.

      Lu Y C, Liu J J, Zhang D, Wang D Z, Sun H, Wang B, Zhang W H and Kang J K. 2017. Zircon U-Pb LA-ICP-MS dating, petrogenesis and tectonic implication of the granodiorite at the Shuangpengxi skarn type gold-copper deposit, West Qinling[J]. Acta Petrologica Sinica, 33(2): 545-564(in Chinese with English abstract).

      Ma R, Huang M L, Xu L L, Bi X W and Liu G. 2020. Magmatic oxygen fugacity of the Cenozoic mantle-derived potassic-ultrapotassic rocks in the western margin of the Yangtze Craton and its implication for the intracontinental porphyry mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(4): 794-809(in Chinese with English Abstract).

      Mair J L, Goldfarb R J, Johnson C A, Hart C J R and Marsh E E. 2006a. Geochemical constraints on the genesis of the Scheelite Dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada[J]. Econ. Geol., 101: 523-553.

      Mair J L, Hart C J R and Stephens J. 2006b. Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism[J]. Geological Society of America Bulletin, 118: 304-23.

      Mair J L, Farmer G L, Groves D I, Hart C J R and Goldfarb R J. 2011.Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems[J]. Econ. Geol., 106(3): 451-480.

      Maloof T L, Baker T and Thompson J F H. 2001. The Dublin Gulch intrusion hosted deposit, Tombstone Plutonic Suite, Yukon Territory, Canada[J]. Mineralium Deposita, 36: 583-593.

      Mao J W, Ouyang H G, Song S W, Santosh M, Yuan S D, Zhou Z H, Zheng W, Liu H, Liu P, Cheng Y B and Chen M H. 2019. Geology and metallogeny of tungsten and tin deposits in China[J]. Econ. Geol., 22: 411-482.

      Mao J W, Yuan S D, Xie G Q, Song S W, Zhou Q, Gao Y B, Liu X, Fu X F, Cao J, Zeng Z L, Li G T and Fan X Y. 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st Century[J]. Mineral Deposits, 38(5): 935-969(in Chinese with English Abstract).

      Mao J W, Wu S H, Song S W, Dai P, Xie G Q, Su Q W, Liu P, Wang X G, Yu Z Z, Chen X Y and Tang W X. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model[J]. Chinese Science Bulletin, 65(33): 3746-3762(in Chinese).

      Mao J W, Zheng W, Xie G Q, Lehmann B and Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the Southeast China Coast: Geological characteristics and metallogenic implications[J]. Geology, 49(5): 592-596.

      Marsh E E, Goldfarb R J, Hart C J R and Johnson C A. 2003. Geology and geochemistry of the Clear Creek intrusion related gold occurrences, Tintina gold province, Yukon, Canada[J]. Canadian Journal of Earth Sciences, 40: 681-99.

      Mavrogenes J, Frost R and Sparks H A. 2013. Experimental evidence of sulfide melt evolution via immiscibility and fractional crystallization[J]. The Canadian Mineralogist, 51(6): 841-850.

      McCollom T M and Seewald J S. 2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments[J]. Chemical Reviews, 107(2): 382-401.

      McCollom T M, Lollar B S, Lcrampe-Couloume G and Seewald J S. 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 74(9): 2717-2740.

      McCoy D T. 2000. Mid-Cretaceous plutonic-related gold deposits of interior Alaska: Metallogenesis, characteristics, gold-associative mineralogy, and geochronology[D]. Fairbanks: University of Alaska. 245.

      McCoy D, Newberry R J, Layer P W, DiMarchi J J, Bakke A A, Masterman J S and Minehane D L. 1997. Plutonic-related gold depo-sits of interior Alaska[J]. Econ. Geol., 9: 191-241.

      McLeish D F, Williams-Jones A E, Vasyukova O V, Clark J R and Board W S. 2021. Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature[J]. Proceedings of the National Academy of Sciences, 118(20): e2100689118.

      Meinert L D. 1989. Gold skarn deposits-Geology and exploration criteria[J]. Econ. Geol., 6: 537-552.

      Meinert L D, Hefton K K, Mayes D and Tasiran I. 1997. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya[J]. Econ. Geol., 92: 509-534.

      Meinert L D. 1998a. A review of skarns that contain gold[A]. In: Lentz D R, eds. Mineralized Intrusion-related Skarn Systems[C]. Mine-ralogical Association of Canada Short Course Series, 26: 359-414.

      Meinert L D. 1998b. Application of skarn deposit zonation to mineral exploration[J]. Exploration and Mining Geology, 6(2): 185-208.

      Meinert L D. 2000. Gold in skarns related to epizonal intrusions[J]. Reviews in Economic Geology, 13: 347-375.

      Meinert L D, Dipple G M and Nicolescu S. 2005. World skarn deposits[J]. Economic Geology 100th Anniversary Volume: 299-336.

      Mercer C N. 2021. Eocene magma plumbing system beneath Cortez Hills carlin-type gold deposit, Nevada: is there a deep-seated pluton[J]? Econ. Geol., 116: 501-513.

      Métrich N, Berry A J, O’Neill H S C and Susini J. 2009. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 73(8): 2382-2399.

      Metz P A. 1991. Metallogeny of the Fairbanks district, Alaska and adjacent areas[R]. Mineral Institute Research Laboratory Report, 90: 237.

      Milford J C. 1984. Geology of the Apex Mountain Group, North and East of the Similkameen River, South-Central British Columbia[D].  The University of British Columbia.

      Mortensen J K, Hart C J R, Murphy D C, Heffernan S, Tucker T L and Smith M T. 2000. Temporal evolution of Early and Mid-Cretaceous magmatism in the Tintina gold belt[J]. British Columbia and Yukon Chamber of Mines, 2: 49-58.

      Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K and Donovan A. 2014. Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing[J]. Earth and Planetary Science Letters, 393: 200-209.

      Mueller A G and Groves D I. 1991. The classification of Western Australiau greenstone-hosted gold deposits according to wallrock-alteration mineral assemblages[J]. Ore Geology Reviews, 6: 291-331.

      Mueller A G. 1997. The Nevoria gold skarn deposit in Archean iron-formation, sSouthern Cross Greenstone belt, western Australia: I. tectonic setting, petrography, and classification[J]. Econ. Geol., 92: 181-209.

      Newberry R J. 1991. Scheelite-bearing skarns in the Sierra Nevada region, California. Contrasts in zoning and mineral compositions and tests of infiltration metasomatism theory[A]. In: Barto-Kyriakidis A, ed., Skarn-their genesis and metallogeny: Athens, Greece, Theophrastus Publications S.A[C]. 343-384.

      Newberry R J, McCoy D T and Brew D A. 1995a. Plutonic-hosted gold ores in Alaska: Igneous versus metamorphic origins[J]. Resource Geology, 18: 57-100.

      Newberry R J and Solie D N. 1995b. Data for plutonic rocks and associated gold deposits in interior Alaska[R]. Alaska Division of Geological and Geophysical Surveys Public-Data File 95-25, 62.

      Newberry R J, Allegro G L, Cutler S E, Hagen-Levelle J H, Adams D D, Nicholson L C, Weglarz T B, Bakke A A, Clautice K H, Coulter G A, Ford M J, Myers G L and Szumigala D J. 1997. Skarn deposits of Alaska[J]. Econ. Geol., 9: 355-395.

      Newberry R J. 1998. W & Sn skarn deposits: A 1998 status report[A]. In: Lentz D R, ed. Mineralized intrusion-related skarn systems[C]. Mineralogical Association of Canada Short Course Handbook, 26: 289-336.

      Nivin V A, Treloar P J, Konopleva N G and Ikorsky S V. 2005. A review of the occurrence, form and origin of C-bearing species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia[J]. Lithos, 85: 93-112.

      Okamoto H and Massalski T B. 1983. The Au-Bi (gold-bismuth) system[J]. Bulletin of Alloy Phase Diagrams, 4(4): 401-407.

      Palomba M and Carotenuto G. 2016. Precipitation of lamellar gold nanocrystals in molten polymers[R]. AIP Conference Proceedings, 1736(1): 020151.

      Parrish R R and Monger J W H. 1992. New U-Pb dates from southwestern British Columbia: In radiogenic age and isotope studies. Report 5[R]. Geological Survey of Canada, 91-2, 87-108.

      Phillips G N and Powell R. 2015. A practical classification of gold deposits, with a theoretical basis[J]. Ore Geology Reviews, 65: 568-573.

      Pinet N, Davis W J, Petts D C, Sack P, Mercier-Langevin P, Lavoie D and Jackson S E. 2022. U-Pb vein calcite dating reveal the age of carlin-type gold deposits of Central Yukon and a contemporaneity with a regional intrusion-related metallogenic event[J]. Econ. Geol., 117: 905-922.

      Pirajno F. 2008. Hydrothermal processes and mineral systems[M]. Berlin: Springer. 1-528.

      Potter J, Rankin A H and Treloar P J. 2004. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia[J]. Lithos, 75: 311-330.

      Qi J. 2021. Geochronology and geochemical characteristics of ore bea-ring porphyries in the North-Zegulang ore segment, Jiama[D]. Supervisor: Tang J X. Beijing: China University of Geosciences (Beijing). 1-61(in Chinese with English abstract).

      Qiu K F, Deng J, Laflamme C, Long Z Y, Wan R Q, Moynier F, Yu H C, Zhang J Y, Ding Z J and Goldfarb R. 2023. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J]. Geochimica et Cosmochimica Acta, 343: 133-141.

      Ray G E, Ettlinger A D and Meinert L D. 1990. Gold skarns: Their distribution, characristics and problems in classification[R]. British Columbia Geological Survey Geological Fieldwork, 237-246.

      Ray G E, Webster I C L, Dawson G L and Ettlinger A D. 1992. A geological overview of the Hedley gold skarn district southern British Golumbia[R]. Geological Fieldwork of British Columbia Geological Survey, Paper 1993-1: 269-279.

      Ray G E and Dawson G L. 1994. The geology and mineral deposits of the Hedley gold skarn district, southern British Columbia[J]. Mi-nistry of Energy, Mines and Petroleum Resources Bulletin, 87: 156.

      Redin T O, Redina A A, Prokopiev I R, Dultsev V F, Kirillov M V and Mokrushnikov V P. 2020. The Lukoganskoe Au-Cu skarn deposit (eastern Transbaikalia): Mineral composition, age, and formation conditions[J]. Russian Geology and Geophysics, 61: 174-195.

      Redwood S D and Rice C M. 1997. Petrogenesis of Miocene basic shoshonitic lavas in the Bolivian Andes and implications for hydrothermal gold, silver and tin deposits[J]. Journal of South American Earth Sciences, 10: 203-221.

      Roedder E R. 1984. Fluid inclusions[J]. Reviews in Mineralogy, 12: 644.

      Rowins S M. 2000. Reduced porphyry copper gold deposits: A new variation on an old Theme[J]. Geology, 28(6): 491-494.

      Rui Z Y, Zhao Y M, Wang L S and Wang Y T. 2003. Role of volatile components in formation of skarn and porphyry deposits[J]. Mineral Deposits, 22(1): 141-148(in Chinese with English Abstract).

      Santacruz R L, Redwood S D, Cecchi A, Matteini M, Botelho N F, Ceballos J, Starling T and Molano J C. 2021. The age and petrogenesis of reduced to weakly oxidized porphyry intrusions at the Marmato gold deposit, Colombia[J]. Ore Geology Reviews, 131: 103953.

      Saxena S K and Fei Y. 1988. Fluid mixture in the C-H-O system of high pressure and high temperature[J]. Geochimica et Cosmochimica Acta, 52: 505-512.

      Shen P, Pan H D, Xiao W J, Li X H, Dai H W and Zhu H P. 2013. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China[J]. International Geology Review, 55: 1991-2007.

      Shen P, Hattori K, Pan H D, Jackson S and Seitmuratova E. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt[J]. Econ. Geol., 110: 1861-1878.

      Shen P and Pan H D. 2020. Advances and its diagnostic criteria in the study of the reduced porphyry ore deposits in China[J]. Acta Petrologica Sinica, 36(4): 967-994(in Chinese with English Abstract).

      Sherwood Lollar B, Westgate T D, Ward J A, Slater G F and Lacrampe-Couloume G. 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs[J]. Nature, 416: 522-524.

      Shi K T, Ulrich T, Wang K Y, Ma X L, Li S D and Wang R. 2020. Hydrothermal evolution and ore genesis of the Laozuoshan Au skarn deposit, northeast China: Constrains from mineralogy, fluid inclusion, and O-C-S-Pb isotope geochemistry[J]. Ore Geology Reviews, doi.org/10.1016/j.oregeorev.2020.103879.

      Sillitoe R H. 1993. Epithermal models: Genetic types, geometrical controls and shallow features[J]. Geological Association of Canada Special Paper, 40: 403-417.

      Simmons S F, Brown K L and Tutolo B M. 2016. Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems: Spatial patterns, fluid-mineral equilibria, and implications for epithermal mineralization[J]. Econ. Geol., 111(3): 589-618.

      Smith C N. 2001. Geology of the South Redline Au skarn deposit, Humboldt County, Nevada[D]. Washington: Washington State University. 176.

      Smith C M, Canil D, Rowins S M and Friedman R. 2012. Reduced granitic magmas in an arc setting: The Catface porphyry Cu-Mo deposit of the Paleogene Cascade Arc[J]. Lithos, 154: 361-373

      Smithson D M. 2004. Late Eocene tectono-magmatic evolution and genesis of reduced porphyry copper-gold mineralization at the North Fork deposit, West Central Cascade Range, Washington[D]. USA: University of British Columbia. 1-100.

      Soloviev S G and Krivoshchekov N N. 2011. Vostok-2 gold-base metal-tungsten skarn deposit, Central Sikhote-Alin, Russia[J]. Geology of Ore Deposits, 53: 478-500.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2013. Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monoto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia[J]. Mineralium Deposita, 48: 603-627.

      Soloviev S G, Kryazhev S and Dvurechenskaya S. 2017a. Geology, mineralization, and fluid inclusion study of the Kuru-Tegerek Au-Cu-Mo skarn deposit in the Middle Tien Shan, Kyrgyzstan[J]. Mineralium Deposita, doi: 10.1007/s00126-017-0729-5.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2017b. Geology, mineralization, stable isotope, and fluid inclusion characteristics of the Vostok-2 reduced W-Cu skarn and Au-W-Bi-As stockwork deposit, Sikhote-Alin, Russia[J]. Ore Geology Reviews, 86: 338-365.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2017c. Geology, mineralization, and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (±Cu, Au, Bi) skarn deposit, Sikhote-Alin, Russia[J]. Ore Geology Reviews, doi: http://dx.doi.org/10.1016/j.oregeorev.2017.06.002.

      Soloviev S G and Kryazhev S G. 2018. Tungsten mineralization in the Tien Shan gold belt: Geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, western Uzbekistan[J]. Ore Geology Reviews, 101: 700-724.

      Soloviev S G, Kryazhev S G, Dvurechenskaya S S and Uyutov V I. 2019a. Geology, mineralization, fluid inclusion, and stable siotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia[J]. Ore Geology Reviews, 112: 103309.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2019b. Geology, mineralization, and fluid inclusion characteristics of the Meliksu reduced tungsten skarn deposit, Alai Tien Shan, Kyrgyzstan: Insights into conditions of formation and regional links to gold mineralization[J]. Ore Geology Reviews, 111: 103003.

      Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2020. Geology, mineralization, and fluid inclusion characteristics of the Agylki reduced tungsten(W-Cu-Au-Bi) skarn deposit, Verkhoyansk fold- and -thrust belt, eastern Siberia: Tungsten deposit in a gold-dominant metallogenic Province[J]. Ore Geology Reviews, 120: 103452.

      Song S G, Su L, Niu Y, Lai Y and Zhang L F. 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge[J]. Geochimica et Cosmochimica Acta, 73: 1737-1754.

      Sugisaki R and Mimura K. 1994. Mantle hydrocarbons: Abiotic or biotic[J]? Geochimica et Cosmochimica Acta, 58(11): 2527-2542.

      Sui J X, Li J W, Wen G J and Xiao Y. 2016. The Dewulu Reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system[J]. Ore Geology Reviews, doi:10.1016/j.oregeorev.2016.09.018.

      Sun W D, Arculus R J, Kamenetsky V S and Binns R A. 2014. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 431: 975-97.

      Takagi T. 2004. Origin of magnetite- and ilmenite-series granitic rocks in the Japan Arc[J]. American Journal of Science, 304(2): 169-202.

      Theodore T G, Orris G J, Hammerstrom J M and Bliss J D. 1991. Gold-bearing skarns[R]. U.S.Geological Survey Bulletin, 1930.

      Thompson J F H, Sillitoe R H, Baker T, Lang J R and Mortensen J K. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces[J]. Mineralium Deposita, 34: 323-334.

      Thompson J F H and Newberry R J. 2000. Gold deposits related to reduced granitic intrusions[J]. Society of Economic Geologists, Reviews, 13: 377-400.

      Tomkins A G and Mavrogenes J A. 2002. Mobilization of gold as a polymetallic melt during pelite anatexis at the Challenger deposit, South Australia: A metamorphosed Archean gold deposit[J]. Econ. Geol., 97(6): 1249-1271.

      Tomkins A G, Pattison D R M and Frost B R. 2007. On the initiation of metamorphic sulfide anatexis[J]. Journal of Petrology, 48(3): 511-535.

      Tooth B, Brugger J, Ciobanu C and Liu W H. 2008 Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids[J]. Geology, 36(10): 815-818.

      Tooth B, Ciobanu C L, Green L, O’Neil B and Brugger J. 2011. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study[J]. Geochimica et Cosmochimica Acta, 75(19): 5423-5443.

      Tu W. 2014. Characteristics and genesis of the Chaoshan skarn gold deposit, Tongling, Anhui Province[D]. Supervisor: Du Y S. Beijing: China University of Geosciences (Beijing). 1-128(in Chinese with English Abstract).

      Ueno Y, Yamada K, Yoshida N, Maruyama S and Isozaki Y. 2006. Evidence from fluid inclusions for microbial methanogenesis in the Early Archaean era[J]. Nature, 440(7083): 516-519.

      Wang D Z, Liu J J, Zhai D G, Carranza E J M, Wang Y H, Zhen S M, Wang J, Wang J P, Liu Z J and Zhang F F. 2019. Mineral paragenesis and ore-forming processes of the Dongping gold deposit, Hebei Province, China[J]. Resource Geology, 69(3): 287-313.

      Wang H. 2016. Petrogenesis, metallogeny and tectonic settings of the Saishitang Cu deposit in Qinghai Province, China[D]. Supervisor: Feng C Y. Beijing: Chinese Academy of Geological Sciences. 1-168(in Chinese with English Abstract).

      Wang J, Xie G Q, Yao L, Zhu Q Q and Li W. 2014. Petrogenesis of granodiorite porphyry in Jilongshan skarn Au deposit of southeast Hubei Province: Geochemical and zircon U-Pb dating constraints[J]. Mineral Deposits, 33(1):137-152(in Chinese with English abstract).

      Wang Z C, Wang Y, Wang X, Cheng H and Xu Z. 2021. Metasomatized lithospheric mantle and gold mineralization[J]. Earth Science, 46(12): 4197-4229(in Chinese with English Abstract).

      Wang Z H. 2017. Geochemical, geochronology and oxygen fugacity characteristics of Xishan granite and constraint to the Tin mineralization in Yangchun basin, Guangdong, South China[D]. Supervisor: Shi Z M and Liang J L. Chengdu: Chengdu University of Technology, 1-67(in Chinese with English Abstract).

      Webster J D and Holloway J R. 1988. Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: New implications for granitic differentiation and ore deposition[J]. Geochimica and Cosmochimica Acta, 56: 2091-2105.

      Wei B, Wang C Y, Wang Z C, Cheng H, Xia X P and Tan W. 2021. Mantle-derived gold scavenged by bismuth-(tellurium)-rich melts: Evidence from the Mesozoic Wulong gold deposit in the North China Craton[J]. Ore Geology Reviews, 131: 104047.

      Wei S N and Zhu Y F. 2015. Petrology, geochronology and geochemistry of intermediate-acidic intrusions in Baogutu area, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 31(1):143-160(in Chinese with English Abstract).

      Wei S N, Zhu Y F, Jiang J Y and Feng W Y. 2019. Magmatic oxidation state of the Baogutu porphyry copper deposit in the West Junggar of China: Implication for ore-formation[J]. Ore Geology Reviews, 106: 351-368.

      Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 161(1): 291-314.

      Wu C. 2017. Tectonic setting and formation mechanism of reduced porphyry copper-molybdenum deposit, southern West Junggar[D]. Supervisor: Dong L H. Beijing: China University of Geosciences (Beijing). 1-229(in Chinese with English Abstract).

      Wulff K, Steven N M, Hein K A A and Kinnaird J A. 2017. The relationship between the structural orientation and the gold minera-lization of quartz-sulphide veins in the Navachab gold deposit, Namibia[J]. Ore Geology Reviews, 80: 504-521.

      Xie G Q, Li X H, Han Y X, Zhu Q Q, Li W, Ye H and Song S W. 2020. Recent progress in study of enrichment mechanism of tellurium, selenium and thallium from oxidized gold-rich porphyry-skarn deposits[J]. Mineral Deposits, 39(4): 559-567(in Chinese with English Abstract).

      Xie T W, Tang J X, Chen Y C and Lang X H. 2018. Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: Implications for petrogenesis and mineralization[J]. Ore Geology Reviews, 96: 98-114.

      Xu W G and Zhang D H. 2012. An interpretation of the role of reduced fluid in porphyry metallogenesis[J]. Acta Geologica Sinica, 86(3): 495-502(in Chinese with English Abstract).

      Xu X Y, Chen J L, Gao T, Li P and Li T. 2014. Granitoid magmatism and tectonic evolution in northern edge of the western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 30(2): 371-389(in Chinese with English Abstract).

      Xu Z W, Fang C Q, Lu X C, Song J X, Lu J J, Hua M, Huang S S, Nie G P and Zhu S P. 2004. Geological and Geochemical characteristics of rock mass related with gold mineralization in the Chaoshan deposit[J]. Geology and Prospecting, 40(3): 41-46(in Chinese with English abstract).

      Yang Z M and Cooke D R. 2019. Porphyry copper deposits in China[J]. Society of Economic Geologists Special Publication, 22: 133-187.

      Yuan S D, Williams-Jones A E, Mao J W, Zhao P L, Yan C and Zhang D L. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths[J]. Econ. Geol., 113(5): 1193-1208.

      Zajacz Z and Halter W. 2009. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and va‐por inclusions in a basaltic andesite from the Villarrica volcano(Chile)[J]. Earth and Planetary Science Letters, 282(1-4): 115-121.

      Zajacz Z, Candela P A, Piccoli P M, Sanchez-Valle C and Wälle M. 2013. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas[J]. Geochimica et Cosmochimica Acta, 112: 288-304.

      Zhai M G and Hu B. 2021. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Sciences and Environment, 43(1): 1-11(in Chinese with English Abstract).

      Zhang F, Zhang D Y, Weng W F, Wei D Z, Wang J, Jiang Z R, Hou S Y and Zhou T F. 2023. The genesis and Rb mineralization of the Changlingjian granite porphyry, eastern Jiangnan Orogenic Belt[J]. Acta Petrologica Sinica, 39(6): 1649-1673(in Chinese with English Abstract).

      Zhang J J, Mei Y P, Wang D H and Li H Q. 2008. Isochronology study on the Xianglushan scheelite deposit in north Jiangxi Province and its geological significance[J]. Acta Geologica Sinica, 82(7): 927-931(in Chinese with English Abstract).

      Zhang R Q, Lu J J, Wang R C, Yao Y, Ding T, Hu J B and Zhang H F. 2016. Petrogenesis of W- and Sn-bearing granites and the mechanism of their metallogenic diversity in the Wangxianling area, southern Hunan Province[J]. Geochimica, 45(2): 105-132(in Chinese with English Abstract).

      Zhang W. 2017. A study on petrology, evolution of the ore-forming fluid and the genesis of the Seleteguole reduced porphyry-skarn Cu-Mo deposit, Western Tianshan, Xinjiang[D]. Supervisor: Su W C and Zhang X C. Beijing: University of Chinese Academy of Sciences. 1-141(in Chinese with English Abstract).

      Zhao B, Zhang D H, Shi C L and Zhang R Z. 2014. Rethinking of the metallogenic specialization and ore-bearing potential of redox-related granitoid[J]. Acta Petrologica et Mineralogica, 33(5): 955-964(in Chinese with English Abstract).

      Zhao C T. 2021. Mineralization, metallogenic model and geodynamic setting of skarn type Au-Fe-Cu polymetallic deposits in the central of Heilongjiang Province[D]. Supervisor: Su J G. Changchun: Jilin University. 1-224(in Chinese with English Abstract).

      Zhao H J, Mao J W, Xiang J F, Zhou Z H, Wei K T and Ke Y F. 2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province[J]. Acta Petrologica Sinica, 26(3): 768-784(in Chinese with English abstract).

      Zhao W and Zhang H J. 2022. Geochemical characteristics of skarn minerals and causative granites of the Xianglushan tungsten skarn deposit, Jiangxi, South China[J]. Acta Petrologica Sinica, 38(2): 483-494(in Chinese with English Abstract).

      Zhao Y M, Lin W W, Bi C S, Li D X and Jiang C J. 2012. Skarn depo-sits in China[M]. Beijing: Geological Publishing House. 1-411(in Chinese).

      Zhao Y M, Feng C Y and Li D X. 2017. New progress in prospecting for skarn deposits and spatial-teporal distribution of skarn depo-sits in China[J]. Mineral Deposits, 36(3): 519-543(in Chinese with English Abstract).

      Zhao Y M, Feng C Y, Qu H Y, Li D X, Liu J N and Wu Q. 2023. Major skarn deposits in the world[M]. Beijing: Geological Publishing House. 1-359(in Chinese).

      Zheng J H and Guo C L. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance[J]. Acta Petrologica Sinica, 28(1): 75-90(in Chinese with English Abstract).

      Zheng W B, Tang J X, Zhong K H, Ying L J, Leng Q F, Ding S and Lin B. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa region, China[J]. Ore Geology Reviews, 74: 151-169.

      Zhou T F, Fan Y, Wang S W and White N C. 2017. Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley Metallogenic Belt[J]. Acta Petrologica Sinica, 33(11): 3353-3372(in Chinese with English Abstract).

      Zhu B, Zhang H F, Shen P, Su B X, Xiao Y and He Y S. 2018. Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt[J]. Ore Geology Reviews, 101: 803-818.

      附中文参考文献

      蔡明海,张文兵,彭振安,刘虎,郭腾飞,谭泽模,唐龙飞. 2016.湘南荷花坪锡多金属矿床成矿年代研究[J].岩石学报,32(7):2111-2123

      曹锡章,宋天佑,王杏乔. 1994.无机化学(第3版)[M].北京:高等教育出版社. 495-508.

      陈甲斌,余良晖. 2020.中美欧矿产资源形势对比分析[M].北京:地质出版社. 1-173.

      陈衍景,陈华勇,Zaw K,Pranco P,张增杰. 2004.中国陆区大规模成矿的地球动力学:以夕卡岩型金矿为例[J].地学前缘,11(1):57-83.

      陈衍景,倪培,范宏瑞,Pirajno F,赖勇,苏文超,张辉. 2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,23(9):2085-2108.

      陈毓川,王登红,朱裕生,徐志刚,王世称,翟裕生,汤中立,裴荣富,沈保丰,肖克炎. 2007.中国成矿体系与区域成矿评价[M].北京:地质出版社. 1-1005.

      樊献科,张智宇,侯增谦,潘小菲,张翔,盛俞策,戴佳良,吴显愿.2020.江西大湖塘钨矿田平苗矿区含矿花岗岩矿物学特征及对成矿的指示意义[J].岩石学报,36(12):3757-3782.

      范宏瑞,蓝庭广,李兴辉,Santosh M,杨奎锋,胡芳芳,冯凯,胡换龙,彭红卫,张永文. 2021.胶东金成矿系统的末端效应[J].中国科学:地球科学,51(9):1504-1523.

      龚雪婧,杨竹森,赵晓燕,张雄,官玮琦. 2018.西藏纳如松多铅锌矿区晚白垩世石英闪长岩形成机制及其地质意义:岩浆锆石证据[J].矿床地质,37(1):91-104.

      李昌昊,申萍,潘鸿迪,曹冲. 2017.新疆西准噶尔成矿流体中还原性气体形成机理[J].地球科学与环境学报,39(3):386-396.

      李建威,隋吉祥,靳晓野,文广,昌佳,朱锐,詹涵钰,武文辉. 2019.西秦岭夏河-合作地区与还原性侵入岩有关的金成矿系统及其动力学背景和勘查意义[J].地学前缘,26(5):17-32.

      李延河,段超,曾普胜,简伟,万秋,胡古月,赵晓燕,武晓珮. 2020.还原性含碳质围岩在斑岩铜矿成矿中的作用[J].地球学报,41(5):637-650.

      刘家军,王大钊,翟德高,夏清,郑波,高燊,钟日晨,赵胜金. 2021.低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志[J].岩石学报,37(9):2629-2656.

      刘星成,许婷,熊小林,李立,李建威. 2021.岩浆熔/流体中金的溶解度:高温高压实验研究进展[J].中国科学:地球科学,51(9):1477-1488.

      路英川,刘家军,张栋,王大钊,孙昊,王斌,张文华,康建坤. 2017.西秦岭双朋西矽卡岩型金铜矿床花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J].岩石学报,33(2): 545-564.

      马瑞,黄明亮,胥磊落,毕献武,刘龚. 2020.扬子克拉通西缘新生代幔源钾质-超钾质岩岩浆氧逸度及其对陆内斑岩成矿作用的启示[J].矿物岩石地球化学通报,39(4):794-809.

      毛景文,袁顺达,谢桂青,宋世伟,周琦,高永宝,刘翔,付小方,曹晶,曾载淋,李通国,樊锡银. 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J].矿床地质,38(5):935-969.

      毛景文,吴胜华,宋世伟,戴盼,谢桂青,苏蔷薇,刘鹏,王先广,余忠珍,陈祥云,唐维新. 2020.江南世界级钨矿带:地质特征、成矿规律和矿床模型[J].科学通报,65(33):3746-3762.

      祁婧.2021.西藏甲玛矿床则古朗北矿段含矿斑岩年代学及地球化学特征[D].导师:唐菊兴.北京:中国地质大学(北京). 1-61.

      芮宗瑶,赵一鸣,王龙生,王义天. 2003.挥发份在夕卡岩型和斑岩型矿床形成中的作用[J].矿床地质,22(1):141-148.

      申萍,潘鸿迪. 2020.中国还原性斑岩矿床研究进展及判别标志[J].岩石学报,36(4):967-994.

      涂伟. 2014.安徽铜陵朝山矽卡岩型金矿的特征和成因[D].导师:杜杨松.北京:中国地质大学(北京).1-128.

      汪在聪,王焰,汪翔,程怀,徐喆. 2021.交代岩石圈地幔与金成矿作用[J].地球科学,46(12):4197-4229.

      汪祖豪. 2017.广东阳春盆地锡山岩体岩石地球化学、年代学和氧逸度特征及其对锡成矿作用的制约[D].导师:施泽明,梁金龙.成都:成都理工大学.1-67.

      王辉. 2016.青海赛什塘铜矿成岩成矿作用与构造背景[D].导师:丰成友.北京:中国地质科学院,1-168.

      王建,谢桂青,姚磊,朱乔乔,李伟. 2014.鄂东南鸡笼山矽卡岩型金矿床花岗闪长斑岩的成因:地球化学和锆石U-Pb年代学约束[J].矿床地质,33(1):137-152.

      魏少妮,朱永峰. 2015.新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J].岩石学报,31(1):143-160.

      吴楚. 2017.西准南部还原性斑岩铜钼矿构造背景与形成机制[D].导师:董连慧.北京:中国地质大学(北京).1-229.

      谢桂青,李新昊,韩颖霄,朱乔乔,李伟,叶晖,宋世伟. 2020.氧化性富金斑岩-矽卡岩矿床中碲、硒、铊富集机制的研究进展[J].矿床地质,39(4):559-567.

      徐文刚,张德会. 2012.还原性流体与斑岩型矿床成矿机制探讨[J].地质学报,86(3):495-502.

      徐学义,陈隽璐,高婷,李平,李婷. 2014.西秦岭北缘花岗质岩浆作用及构造演化[J].岩石学报,30(2):371-389.

      徐兆文,方长泉,陆现彩,宋敬祥,陆建军,华明,黄顺生,聂桂平,朱士鹏. 2004.与朝山金矿有关岩体地质地球化学特征[J].地质与勘探,40(3):41-46.

      翟明国,胡波. 2021.矿产资源国家安全、国际争夺与国家战略之思考[J].地球科学与环境学报,43(1):1-11.

      张飞,张达玉,翁望飞,韦导忠,王静,姜重任,侯舒雅,周涛发.2023.江南造山带东段长岭尖花岗斑岩的形成年代、岩石成因及Rb成矿指示[J].岩石学报,39(6):1649-1673.

      张家菁,梅玉萍,王登红,李华芹. 2008.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报,82(7):927-931.

      张伟. 2017.新疆西天山色勒特果勒还原性斑岩-矽卡岩型铜钼矿床岩石学、成矿流体演化及矿床成因研究[D].导师:苏文超,张兴春.北京:中国科学院大学. 1-141.

      章荣清,陆建军,王汝成,姚远,丁腾,胡加斌,张怀峰. 2016.湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制[J].地球化学,45(2):105-132.

      赵博,张德会,石成龙,张荣臻. 2014.对与氧逸度有关的花岗岩类成矿专属性-含矿性问题的再思考[J].岩石矿物学杂志,33(5):955-964.

      赵春涛. 2021.黑龙江中部矽卡岩型金、铁铜多金属矿床成矿作用、成矿模式及地球动力学背景[D].导师:孙景贵.长春:吉林大学. 1-224.

      赵海杰,毛景文,向君峰,周振华,魏克涛,柯于富. 2010.湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征[J].岩石学报,26(3):768-784.

      赵文,张怀瑾. 2022.江西香炉山钨矿床矽卡岩矿物和成矿花岗岩地球化学特征及其指示意义[J].岩石学报,38(2):483-494.

      赵一鸣,林文蔚,毕承思,李大新,蒋崇俊. 2012.中国矽卡岩矿床[M].北京:地质出版社.1-411.

      赵一鸣,丰成友,李大新. 2017.中国矽卡岩矿床找矿新进展和时空分布规律[J].矿床地质,36(3):519-543.

      赵一鸣,丰成友,瞿泓滢,李大新,刘建楠,吴琼. 2023.世界主要矽卡岩矿床[M].北京:地质出版社. 1-359.

      郑佳浩,郭春丽. 2012.湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义[J].岩石学报,28(1):75-90.

      周涛发,范裕,王世伟,White N C. 2017.长江中下游成矿带成矿规律和成矿模式[J].岩石学报,33(11):3353-3372.


  • <..>
    您是第241766451位访问者  京ICP备05032737号-5  京公网 安备110102004559
    版权所有:《矿床地质》编辑部
    主管单位:中国科学技术协会 主办单位:中国地质学会矿床地质专业委员会 中国地质科学院矿产资源研究所
    地  址: 北京市百万庄大街26号 邮编:100037 电话:010-68327284;010-68999546 E-mail: minerald@vip.163.com
    本系统由北京勤云科技发展有限公司设计 
    手机扫一扫